Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Production line for artificial skin

10.12.2008
A fully automated process is set to improve the production of artificial tissue: medical scientists can perform transplants with skin produced in the laboratory. This tissue is also suitable for testing chemicals at a low cost without requiring animal experiments.

Some patients wish they had a second skin – for instance because their own skin has been burnt in a severe accident. But transplanting skin is a painstaking task, and a transplant that has to cover large areas often requires several operations. Medical scientists have therefore been trying for a long time to grow artificial tissue. This “artificial skin” would allow them to treat these patients better and faster.

Tissue engineering has been at the focus of research for many years, and tissues such as cartilage or skin are already being cultured in numerous biotechnology laboratories. But the researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart plan to go a step further than that. They are aiming to enable fully automated tissue production.

“Until now, methods of culturing tissue like that used for skin transplants have been very expensive,” says IGB head of department Professor Heike Mertsching. “Most of the steps are carried out manually, which means that the process is not particularly efficient.” The researchers have therefore elaborated a novel conceptual design in collaboration with colleagues from the Fraunhofer Institutes for Production Technology IPT, Manufacturing Engineering and Automation IPA, and Cell Therapy and Immunology IZI.

First of all, a biopsy – that is, a sample of human tissue – is checked for sterility. A gripper arm then transports the biopsy into the automated device where the individual steps are performed: The machine cuts the biopsy into small pieces, isolates the different cell types, stimulates their growth, and mixes the skin cells with collagen. A three-dimensional reconstruction of the different skin layers is produced with the aid of a special gel matrix – and the skin is ready. In the final step, the machine packages the cells for shipment. Alternatively, the tissue can be cryopreserved – that is, deep-frozen and stored for later use.

“It was important for us that the entire mechanical process is divided into separate modules,” says Mertsching. “This enables us to replace or modify individual modules, depending what is needed for the production of different tissue types.” The method opens up almost unlimited new possibilities for the medical scientists. One of their upcoming projects is to produce intestinal tissue for resorption tests.

Prof. Dr. Heike Mertsching | EurekAlert!
Further information:
http://www.igb.fraunhofer.de

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>