Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Process for expansion and division of heart cells identified

19.02.2009
Could provide key to regenerative therapies

Researchers at the Gladstone Institute of Cardiovascular Disease (GICD) and the University of California, San Francisco have unraveled a complex signaling process that reveals how different types of cells interact to create a heart.

It has long been known that heart muscle cells (cardiomyocytes) actively divide and expand in the embryo, but after birth this proliferative capacity is permanently lost. How this transition occurs has not been known.

In the current issue of the journal Developmental Cell, the scientists show that the secret to this switch lies in the cells that surround the muscle cells, known as fibroblasts, which send signals that tell cardiomyocytes to divide or get bigger in size. Manipulation of these signals may be able to induce cardiomyocytes to divide again for regenerative purposes after heart attacks.

Cells exist in a three-dimensional matrix with other cells. Reciprocal signaling between the neighboring cells, along with internally generated factors and signals, insure that the tissues attain the correct shape, size, and function. In heart development, prior to birth (embryogenesis) heart cells (cardiomyocytes) proliferate and develop into different parts of the heart. After birth, the cells no longer proliferate. Although they continue to grow, the inability to proliferate renders the heart unable to regenerate cells after they have been damaged as occurs in heart attacks. It has been suggested that cardiac fibroblasts, which are cells that surround the muscle cells and make up over half of the heart cells, might be important in embryogenesis, but little is known about their development and roles in the embryonic heart.

"We've always suspected that different cell types are involved in determining how a heart is built," said GICD Director and senior author Deepak Srivastava, MD. "Our research showed that the signals from cardiac fibroblasts contribute to the different responses of cardiomyocytes."

To replicate the cell interactions in the developing heart, the scientists developed a novel method of growing two distinct cell types together. By observing the cells in this system, they found that the embryonic cardiac fibroblasts promoted cell division by the cardiomyocytes more efficiently than adult cardiac fibroblasts. Furthermore, they found that fibronectin, collagen and a heparin-binding EGF-like growth factor are secreted specifically by the embryonic cardiac fibroblasts as signals to promote this cell division. These molecules act through another signaling molecule called b1 integrin, found on the surface of cardiomyocytes. The team confirmed their observations in mutant mice that lacked b1 integrin. The mutant mice had fewer myocardial cells and disruptions of the muscle integrity that eventually led to prenatal death.

"We found a major difference in the function of embryonic and adult cardiac fibroblasts. Embryonic cardiac fibroblasts promote myocyte proliferation, while adult fibroblasts promote myocyte hypertrophy," said Masaki Ieda, MD, PhD, Gladstone postdoctoral fellow and lead author on the study. "We are now trying to make adult cardiac fibroblasts more like their embryonic counterparts to induce cardiomyocyte proliferation in the adult."

"Fibroblasts are also abundant and integrally involved in many other tissues, including skin, breast, lung and some cancers. Our results may be relevant to the broader understanding of tissue development, function, and disease," said Dr. Srivastava.

Valerie Tucker | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>