Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Problem of fake medicines in developing countries could be solved

01.09.2010
Counterfeiting of drugs is a huge industry with an annual turnover of more than SEK 500 billion. In Africa the situation is extremely serious. Half of the malaria medication sold there could be ineffective or even harmful.

There is currently no good way to identify counterfeit drugs. However, researchers from Lund and the UK have now developed a technique that could resolve the situation.

In two years the researchers hope to have a prototype ready. It will resemble a small briefcase, in which a pharmacist, customs officer or pharmaceuticals agent can place a packet of tablets, without having to open the packet. After a minute or so the device indicates whether or not the medicine is fake.

“There are a number of advantages to this technique. It is not only reliable but also simple and cheap, which is a prerequisite if it is to be successfully put into use in developing countries”, comments Andreas Jakobsson, Professor in Mathematical Statistics at Lund University and one of the researchers on the project.

The technique has its origins in the research that Andreas Jakobsson’s Swedish and British colleagues usually conduct: detection of bombs and explosives. The researchers have been called on by HM Revenue and Customs in the UK to detect explosives at Heathrow Airport.

The research is based on a technique known as nuclear magnetic resonance. By exposing a substance to radio waves, the spin of the atom nuclei changes briefly. When the radio pulse is over and the resonance returns to normal, a weak signal, unique to each substance, is emitted. In this way, the researchers can usually work out what chemical substances are hiding in the material.

Researchers have long known that it should also be possible to use this technique to trace counterfeit drugs, but it has not been sufficiently well developed for this purpose. However, a recent breakthrough in the Swedish-British research group’s work has changed that. Now they can also find out if a certain drug actually contains the active ingredient that the packaging claims.

“The signals that are emitted from a chemical substance are incredibly weak! But we have succeeded in developing mathematical algorithms which allow us to capture them. We have also managed to filter out interference from metals, for example, which are often found both in explosives and in the protective packaging around tablets”, explains Andreas Jakobsson.

Professor Jakobsson and his Swedish colleague Erik Gudmundson are responsible for the mathematical calculations, while their colleagues at King’s College London are responsible for the chemical experiments and the development of the equipment.

The researchers were recently awarded funding from the Wellcome Trust to develop a prototype. The Swedish research group is also funded by the Swedish Research Council and the Carl Trygger Foundation.

Counterfeit drugs are usually manufactured in factories in China and India and sold by the mafia and other criminal organisations. At best the drug only contains harmless binders. However, sometimes the manufacturers add rat poison or other cheap but harmful substances that can easily be formed into tablets.

Some contain a weak dose of the active ingredient, which can be particularly harmful in the case of penicillin, for example, when it is important to ensure that all the bacteria are killed. Some counterfeit products work, but entail a loss of revenue for pharmaceutical companies. Even if the problem is greatest in developing countries (in India, it is estimated that 15–20 per cent of all drugs are fake), counterfeit drugs are also found in Europe. Most of the drugs that can be purchased on the Internet are counterfeit.

Earlier press release from King’s College London: http://www.kcl.ac.uk/news/news_details.php?news_id=1418&year=2010 (only distributed within the UK).

For more information, please contact Professor Andreas Jakobsson, Department of Mathematical Statistics, +46 (0)46 222 45 20, +46 (0)730 939696, Andreas.Jakobsson@matstat.lu.se

Pressofficer Kristina Lindgärde, kristina.lindgarde@kansli.lth.se, +46-0709 753500

Kristina Lindgärde | idw
Further information:
http://www.kcl.ac.uk/news/news_details.php?news_id=1418&year=2010

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>