Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Problem of fake medicines in developing countries could be solved

01.09.2010
Counterfeiting of drugs is a huge industry with an annual turnover of more than SEK 500 billion. In Africa the situation is extremely serious. Half of the malaria medication sold there could be ineffective or even harmful.

There is currently no good way to identify counterfeit drugs. However, researchers from Lund and the UK have now developed a technique that could resolve the situation.

In two years the researchers hope to have a prototype ready. It will resemble a small briefcase, in which a pharmacist, customs officer or pharmaceuticals agent can place a packet of tablets, without having to open the packet. After a minute or so the device indicates whether or not the medicine is fake.

“There are a number of advantages to this technique. It is not only reliable but also simple and cheap, which is a prerequisite if it is to be successfully put into use in developing countries”, comments Andreas Jakobsson, Professor in Mathematical Statistics at Lund University and one of the researchers on the project.

The technique has its origins in the research that Andreas Jakobsson’s Swedish and British colleagues usually conduct: detection of bombs and explosives. The researchers have been called on by HM Revenue and Customs in the UK to detect explosives at Heathrow Airport.

The research is based on a technique known as nuclear magnetic resonance. By exposing a substance to radio waves, the spin of the atom nuclei changes briefly. When the radio pulse is over and the resonance returns to normal, a weak signal, unique to each substance, is emitted. In this way, the researchers can usually work out what chemical substances are hiding in the material.

Researchers have long known that it should also be possible to use this technique to trace counterfeit drugs, but it has not been sufficiently well developed for this purpose. However, a recent breakthrough in the Swedish-British research group’s work has changed that. Now they can also find out if a certain drug actually contains the active ingredient that the packaging claims.

“The signals that are emitted from a chemical substance are incredibly weak! But we have succeeded in developing mathematical algorithms which allow us to capture them. We have also managed to filter out interference from metals, for example, which are often found both in explosives and in the protective packaging around tablets”, explains Andreas Jakobsson.

Professor Jakobsson and his Swedish colleague Erik Gudmundson are responsible for the mathematical calculations, while their colleagues at King’s College London are responsible for the chemical experiments and the development of the equipment.

The researchers were recently awarded funding from the Wellcome Trust to develop a prototype. The Swedish research group is also funded by the Swedish Research Council and the Carl Trygger Foundation.

Counterfeit drugs are usually manufactured in factories in China and India and sold by the mafia and other criminal organisations. At best the drug only contains harmless binders. However, sometimes the manufacturers add rat poison or other cheap but harmful substances that can easily be formed into tablets.

Some contain a weak dose of the active ingredient, which can be particularly harmful in the case of penicillin, for example, when it is important to ensure that all the bacteria are killed. Some counterfeit products work, but entail a loss of revenue for pharmaceutical companies. Even if the problem is greatest in developing countries (in India, it is estimated that 15–20 per cent of all drugs are fake), counterfeit drugs are also found in Europe. Most of the drugs that can be purchased on the Internet are counterfeit.

Earlier press release from King’s College London: http://www.kcl.ac.uk/news/news_details.php?news_id=1418&year=2010 (only distributed within the UK).

For more information, please contact Professor Andreas Jakobsson, Department of Mathematical Statistics, +46 (0)46 222 45 20, +46 (0)730 939696, Andreas.Jakobsson@matstat.lu.se

Pressofficer Kristina Lindgärde, kristina.lindgarde@kansli.lth.se, +46-0709 753500

Kristina Lindgärde | idw
Further information:
http://www.kcl.ac.uk/news/news_details.php?news_id=1418&year=2010

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>