Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Problem of fake medicines in developing countries could be solved

01.09.2010
Counterfeiting of drugs is a huge industry with an annual turnover of more than SEK 500 billion. In Africa the situation is extremely serious. Half of the malaria medication sold there could be ineffective or even harmful.

There is currently no good way to identify counterfeit drugs. However, researchers from Lund and the UK have now developed a technique that could resolve the situation.

In two years the researchers hope to have a prototype ready. It will resemble a small briefcase, in which a pharmacist, customs officer or pharmaceuticals agent can place a packet of tablets, without having to open the packet. After a minute or so the device indicates whether or not the medicine is fake.

“There are a number of advantages to this technique. It is not only reliable but also simple and cheap, which is a prerequisite if it is to be successfully put into use in developing countries”, comments Andreas Jakobsson, Professor in Mathematical Statistics at Lund University and one of the researchers on the project.

The technique has its origins in the research that Andreas Jakobsson’s Swedish and British colleagues usually conduct: detection of bombs and explosives. The researchers have been called on by HM Revenue and Customs in the UK to detect explosives at Heathrow Airport.

The research is based on a technique known as nuclear magnetic resonance. By exposing a substance to radio waves, the spin of the atom nuclei changes briefly. When the radio pulse is over and the resonance returns to normal, a weak signal, unique to each substance, is emitted. In this way, the researchers can usually work out what chemical substances are hiding in the material.

Researchers have long known that it should also be possible to use this technique to trace counterfeit drugs, but it has not been sufficiently well developed for this purpose. However, a recent breakthrough in the Swedish-British research group’s work has changed that. Now they can also find out if a certain drug actually contains the active ingredient that the packaging claims.

“The signals that are emitted from a chemical substance are incredibly weak! But we have succeeded in developing mathematical algorithms which allow us to capture them. We have also managed to filter out interference from metals, for example, which are often found both in explosives and in the protective packaging around tablets”, explains Andreas Jakobsson.

Professor Jakobsson and his Swedish colleague Erik Gudmundson are responsible for the mathematical calculations, while their colleagues at King’s College London are responsible for the chemical experiments and the development of the equipment.

The researchers were recently awarded funding from the Wellcome Trust to develop a prototype. The Swedish research group is also funded by the Swedish Research Council and the Carl Trygger Foundation.

Counterfeit drugs are usually manufactured in factories in China and India and sold by the mafia and other criminal organisations. At best the drug only contains harmless binders. However, sometimes the manufacturers add rat poison or other cheap but harmful substances that can easily be formed into tablets.

Some contain a weak dose of the active ingredient, which can be particularly harmful in the case of penicillin, for example, when it is important to ensure that all the bacteria are killed. Some counterfeit products work, but entail a loss of revenue for pharmaceutical companies. Even if the problem is greatest in developing countries (in India, it is estimated that 15–20 per cent of all drugs are fake), counterfeit drugs are also found in Europe. Most of the drugs that can be purchased on the Internet are counterfeit.

Earlier press release from King’s College London: http://www.kcl.ac.uk/news/news_details.php?news_id=1418&year=2010 (only distributed within the UK).

For more information, please contact Professor Andreas Jakobsson, Department of Mathematical Statistics, +46 (0)46 222 45 20, +46 (0)730 939696, Andreas.Jakobsson@matstat.lu.se

Pressofficer Kristina Lindgärde, kristina.lindgarde@kansli.lth.se, +46-0709 753500

Kristina Lindgärde | idw
Further information:
http://www.kcl.ac.uk/news/news_details.php?news_id=1418&year=2010

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>