Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Probing changes to infant milk formulations

23.01.2014
A chip-based detection system for minor functional proteins in infant milk formula could assist quality-control testing

Infant milk formula is a widely accepted alternative to breast milk for babies in their first year of life. Since breast milk contains all the nutrients required by young infants, formula manufacturers aim to closely match their product’s ingredients to those of breast milk.

“Functional proteins in human milk are essential for key biological functions such as immune system development,” explains Ruige Wu from the A*STAR Singapore Institute of Manufacturing Technology. “However, some of these proteins are not found, or are present at lower concentrations, in infant formula products compared to human milk.”

Recently, some manufacturers began advertising that their products contained elevated levels of functional proteins, such as á-lactalbumin and immunoglobulin G. “The ability to measure these functional proteins is very important to control and monitor the quality of infant formula products,” explains Wu. “Supplementation of formula products is expected to be regulated shortly.”

Regulation of these products requires an easy and inexpensive quantitative method to detect low levels of functional proteins in milk, which also contains abundant other proteins. However, Wu explains that existing techniques, based on high-performance liquid chromatography (HPLC), use expensive equipment and time-consuming methods, with pretreatment alone taking several hours. She and her co-workers have now developed a microchip capillary-electrophoresis (CE)-based method that is cheaper, has a shorter assay time and eliminates the need for pretreatment (1).

Wu’s team fabricated a custom-made, microfluidic-chip CE device. The device separates the functional proteins from other, more abundant proteins in the formula using isoelectric focusing. In this process, the proteins move through a gel with a pH gradient, and the point at which they stop on the gel depends on their charge. Since each protein has a slightly different charge, separation occurs. This takes just two minutes.

“The functional proteins are then transferred into the embedded capillary for further separation according to their mass-to-charge ratio,” explains Wu. This capillary zone electrophoresis separation step takes 18 minutes. The team then identified and measured the amount of protein present—while still on the CE column—using ultraviolet detection. “The concentrations of functional proteins are determined from the respective absorbance values and calibration curves,” she says.

The reliability of the device was tested with infant milk formula samples spiked with known amounts of various functional proteins. “Results close to 100 per cent recovery were obtained,” says Wu.

“Our next steps are to collaborate with industry partners in the manufacturing, or quality-control testing, of infant formula or similar protein rich products,” she says.

The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology

Journal information

Wu, R., Wang, Z., Zhao, W., Yeung, W. S.-B. & Fung, Y. S. Multi-dimension microchip-capillary electrophoresis device for determination of functional proteins in infant milk formula. Journal of Chromatography A 1304, 220–226 (2013)

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6859
http://www.researchsea.com

More articles from Life Sciences:

nachricht Stick insects produce bacterial enzymes themselves
31.05.2016 | Max-Planck-Institut für chemische Ökologie

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attosecond camera for nanostructures

Physicists of the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich in collaboration with scientists from the Friedrich-Alexander-Universität Erlangen-Nürnberg have observed a light-matter phenomenon in nano-optics, which lasts only attoseconds.

The interaction between light and matter is of key importance in nature, the most prominent example being photosynthesis. Light-matter interactions have also...

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Better combustion for power generation

31.05.2016 | Power and Electrical Engineering

Stick insects produce bacterial enzymes themselves

31.05.2016 | Life Sciences

In a New Method for Searching Image Databases, a Hand-drawn Sketch Is all it Takes

31.05.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>