Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prion discovery could help keep deadly brain diseases in check

17.01.2014
New research from David Westaway, PhD, of the University of Alberta and Jiri Safar, PhD, Case Western Reserve University School of Medicine has uncovered a quality control mechanism in brain cells that may help keep deadly neurological diseases in check for months or years.

The findings, published in The Journal of Clinical Investigation, "present a breakthrough in understanding the secret life of prion molecules in the brain and may offer a new way to treat prion diseases," said Westaway, Director of the Centre for Prions and Protein Folding Diseases and Professor of Neurology in the Faculty of Medicine and Dentistry at the University of Alberta.

Prion diseases lead to incurable neurodegenerative disorders such as Creutzfeldt-Jakob disease in humans, mad cow disease (Bovine Spongiform Encephalopathy) and chronic wasting disease in deer and elk. The diseases are caused by the conversion of normal cellular prion proteins into the diseased form.

For years, scientists have been perplexed by two unexplained characteristics of prion infections: vastly differing asymptomatic periods lasting up to five decades and when symptoms do arise, greatly varying accumulation of the diseased proteins. In striking contrast, test tube prions replicate rapidly, and in a matter of days reach levels found in brains in the final stage of the disease.

"Our study investigated the molecular mechanism of this intriguing puzzle," said Safar, Co-Director of the National Prion Disease Pathology Surveillance Center and Associate Professor in Departments of Pathology and Neurology in Case Western Reserve University School of Medicine.

In probing these mysteries, Westaway, Safar, their teams and other collaborating researchers in the U.S., Italy and the Netherlands studied a molecule called the 'shadow of the prion protein.'

"Dramatic changes in this shadow protein led us to expand our view to include the normal prion protein itself," said Westaway. "This is a crucial molecule in brain cells because it is pirated as the raw material to make diseased prion proteins."

The production and degradation of the normal prion protein had previously received little attention because it was assumed its production pipeline did not vary.

"The puzzle of the long asymptomatic time period required sorting out the different types of prion protein molecules. Our laboratory developed new techniques to tease out these subtle differences in shape," Safar said.

The researchers discovered a marked drop in the amount of the normal prion protein in eight different types of prion diseases. Strikingly, this drop occurred months or years before the animal models showed tell-tale clinical symptoms of the brain disease.

"Our belief is that cells under prion attack are smarter than we once thought," Westaway said. "They not only sense the molecular piracy by the diseased proteins, but they also adopt a simple and at least partly effective protective response – they minimize the amount raw material from the pipeline for prion production."

"We believe we can kill two birds with one stone, because the normal prion protein is also a receptor for toxicity. Augmenting this natural protective response may be a preferred route to cure prion infections," Safar added.

The study's discovery of a natural protective response can also explain the long latency period in other more common neurodegenerative diseases.

"The pre-clinical phase of the disease—before it shows symptoms—is when you want to set things straight. We may be able to take a slow disease and bring it to a complete standstill," Westaway said. "Since some scientists believe the normal prion protein is an accessory in the brain cell death of Alzheimer's disease, gaining a new understanding of rare yet lethal prion diseases may provoke fresh insights into human dementias."

The study was funded by the Alberta Prion Research Institute, Alberta Innovates-Health Solutions, the Canada Foundation for Innovation, the US National Institutes of Health and Centers for Disease Control and Prevention, the University Health Network, and the Charles S. Britton Fund.

Bev Betkowski | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Life Sciences:

nachricht MACC1 Gene Is an Independent Prognostic Biomarker for Survival in Klatskin Tumor Patients
31.08.2015 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Production research by Fraunhofer IAO honored with three awards at the ICPR 2015

31.08.2015 | Awards Funding

Single-Crystal Phosphors Suitable for Ultra-Bright, High-Power White Light Sources

31.08.2015 | Materials Sciences

Manchester Team Reveal New, Stable 2D Materials

31.08.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>