Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Princeton study reveals the brain's mysterious switchboard operator

20.08.2012
A mysterious region deep in the human brain could be where we sort through the onslaught of stimuli from the outside world and focus on the information most important to our behavior and survival, Princeton University researchers have found.

The researchers report in the journal Science that an area of our brain called the pulvinar regulates communication between clusters of brain cells as our brain focuses on the people and objects that need our attention.

Like a switchboard operator, the pulvinar makes sure that separate areas of the visual cortex — which processes visual information — are communicating about the same external information, explained lead author Yuri Saalmann, an associate research scholar in the Princeton Neuroscience Institute (PNI). Without guidance from the pulvinar, an important observation such as an oncoming bus as one is crossing the street could get lost in a jumble of other stimuli.

Saalmann said these findings on how the brain transmits information could lead to new ways of understanding and treating attention-related disorders, such as attention deficit hyperactivity disorder (ADHD) and schizophrenia. Saalmann worked with senior researcher Sabine Kastner, a professor in the Department of Psychology and the Princeton Neuroscience Institute; and PNI researchers Xin Li, a research assistant; Mark Pinsk, a professional specialist; and Liang Wang, a postdoctoral research associate.

The researchers developed a new technique to trace direct communication between clusters of neurons in the visual cortex and the pulvinar. The team produced neural connection maps using magnetic resonance imaging (MRI), then placed electrodes along those identified communication paths to monitor brain signals of macaques. The researchers trained the monkeys to play a video game during which they used visual cues to find a specific shape surrounded by distracting information. As the macaques focused, Saalmann and his colleagues could see that the pulvinar controlled which parts of the visual cortex sent and received signals.

Saalmann explains the Princeton findings as follows:

"A fundamental problem for the brain is that there is too much information in our natural environment for it to be processed in detail at the same time. The brain instead selectively focuses on, or attends to, the people and objects most relevant to our behavior at the time and filters out the rest. For instance, as we cross a busy city street, our brain blocks out the bustle of the crowd behind us to concentrate more on an oncoming bus.

"The transmission of behaviorally relevant information between various parts of the brain is tightly synchronized. As one brain area sends a signal about our environment, such as that a bus is approaching, another brain area is ready to receive it and respond, such as by having us cross the street faster. A persistent question in neuroscience, though, is how exactly do different brain areas synchronize so that important information isn't lost in the other stimuli flooding our brains.

"Our study suggests that a mysterious area in the center of the brain called the pulvinar acts as a switchboard operator between areas on the brain's surface known as the visual cortex, which processes visual information. When we pay attention to important visual information, the pulvinar makes sure that information passing between clusters of neurons is consistent and relevant to our behavior.

"These results could advance the understanding of the neural mechanisms of selective attention and how the brain transmits information. This is a necessary step in developing effective treatment strategies for medical disorders characterized by a failure of attention mechanisms. These conditions include ADHD, schizophrenia and spatial neglect, which is an inability to detect stimuli often observed following stroke.

"For our study, we trained monkeys to play a video game in which they paid attention to visual cues in order to detect different target shapes. We simultaneously recorded brain activity in the pulvinar and two different areas of the visual cortex. We could see a clear connective path from one portion of the cortex to another, as well as connective paths from the pulvinar to the cortex. When the monkeys paid attention to the visual cues, the pulvinar sent electrical pulses to synchronize particular groups of brain cells in the visual cortex to allow them to communicate effectively.

"A challenge in this study was that we needed to record the activity of cells that were 'speaking' directly with each other so we could trace the line of communication. But there are billions of brain cells. Traditionally, finding a cell-to-cell connection is as likely as randomly selecting two people talking on cell phones in different parts of New York City and discovering that they were speaking to each other.

"To 'listen in' on a direct cell conversation, we developed a new approach of using electrodes to record groups of brain cells that were anatomically connected. We first mapped neural connections in the brain via diffusion tensor imaging, which uses an MRI scanner to measure the movement of water along neural connections. We then used these images to implant electrodes at the endpoints of the neural connections shared by the pulvinar and the visual cortex.

"Our mapping of these communication networks and our finding that the pulvinar is vital to attention prompts a new consideration of the mechanisms behind higher cognitive function. We challenge the common notion that these functions depend exclusively on the cerebral cortex, the outermost layer of the brain responsible for decision-making, attention and language, among other abilities. It also suggests that the prevailing view that visual information is transmitted solely through a network of areas in the visual cortex needs to be revised to include the pulvinar as an important regulator of neural transmission."

The paper "The Pulvinar Regulates Information Transmission Between Cortical Areas Based on Attention Demands" was published Aug. 10 by Science, and was supported by the National Science Foundation and the National Eye Institute, part of the National Institutes of Health.

Information for news media

Saalmann is available to discuss his research with interested members of the news media and can be contacted at saalmann@princeton.edu, 609-258-8318, or through Princeton University science writer Morgan Kelly at 609-258-5729 or mgnkelly@princeton.edu.

Morgan Kelly | EurekAlert!
Further information:
http://www.princeton.edu/main/news/archive/S34/52/20C50/

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>