Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Primate calls, like human speech, can help infants form categories

03.09.2013
Research sheds light on developmental origin of early link between speech and cognition

Human infants' responses to the vocalizations of non-human primates shed light on the developmental origin of a crucial link between human language and core cognitive capacities, a new study reports.

Previous studies have shown that even in infants too young to speak, listening to human speech supports core cognitive processes, including the formation of object categories.

Alissa Ferry, lead author and currently a postdoctoral fellow in the Language, Cognition and Development Lab at the Scuola Internationale Superiore di Studi Avanzati in Trieste, Italy, together with Northwestern University colleagues, documented that this link is initially broad enough to include the vocalizations of non-human primates.

"We found that for 3- and 4-month-old infants, non-human primate vocalizations promoted object categorization, mirroring exactly the effects of human speech, but that by six months, non-human primate vocalizations no longer had this effect -- the link to cognition had been tuned specifically to human language," Ferry said.

In humans, language is the primary conduit for conveying our thoughts. The new findings document that for young infants, listening to the vocalizations of humans and non-human primates supports the fundamental cognitive process of categorization. From this broad beginning, the infant mind identifies which signals are part of their language and begins to systematically link these signals to meaning.

Furthermore, the researchers found that infants' response to non-human primate vocalizations at three and four months was not just due to the sounds' acoustic complexity, as infants who heard backward human speech segments failed to form object categories at any age.

Susan Hespos, co-author and associate professor of psychology at Northwestern said, "For me, the most stunning aspect of these findings is that an unfamiliar sound like a lemur call confers precisely the same effect as human language for 3- and 4-month-old infants. More broadly, this finding implies that the origins of the link between language and categorization cannot be derived from learning alone."

"These results reveal that the link between language and object categories, evident as early as three months, derives from a broader template that initially encompasses vocalizations of human and non-human primates and is rapidly tuned specifically to human vocalizations," said Sandra Waxman, co-author and Louis W. Menk Professor of Psychology at Northwestern.

Waxman said these new results open the door to new research questions.

"Is this link sufficiently broad to include vocalizations beyond those of our closest genealogical cousins," asks Waxman, "or is it restricted to primates, whose vocalizations may be perceptually just close enough to our own to serve as early candidates for the platform on which human language is launched?"

"Non-human primate vocalizations support categorizations in very young human infants" published in the Proceedings of the National Academy of Sciences on September 3.

NORTHWESTERN NEWS: http://www.northwestern.edu/newscenter/

Hilary Hurd Anyaso | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>