Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Primary cilia formation provides insight into genetic diseases

15.04.2010
Identification of protein targets and genes may be key to possible drug therapies for ciliopathies

A team of scientists at the University of California, San Diego School of Medicine have identified a network of genes that initiate and manage cilia formation. Although scientists have known about cilia for decades, only recently have they discovered their role in disease. This new discovery, which may lead to new therapies for ciliopathies, will appear in the April 15 edition of Nature.

Primary cilia are small, hair-like appendages attached to the surface of human cells. They act like antennae, sensing and evaluating extracellular signals to coordinate the development and stability of a wide variety of organs. Ciliopathies are a newly emerging group of genetic diseases caused by defects in the function or structure of cellular primary cilia. These diseases present symptoms such as mental retardation, retinal blindness, obesity, polycystic kidney disease, liver fibrosis, ataxia and some forms of cancer.

The scientists, led by Joe Gleeson, MD, professor of neurosciences and pediatrics at UC San Diego and a Howard Hughes Medical Institute Investigator, and Joon Kim, a UC San Diego postdoctoral fellow, utilized a high-throughput, cell-based screen to evaluate the impact of more than 8,000 genes and their relation to cilia function and development.

"Utilizing high-throughput screening, we were able view a wider array of the genes implicated in ciliopathies and enact systematic approaches, which enabled us to gain deeper insight into the molecular mechanisms of cilia formation," said Gleeson.

Additional investigation revealed that the endocytic recycling pathway, which absorbs and processes plasma membrane, also plays a key role in primary cilia formation. The scientists also identified protein groups that are key modulators between cilia and the endocytic recycling pathway. These findings suggest that there are specific protein targets for the development of ciliopathy therapy, according to Gleeson.

When cytochalasin D, a small molecule which permeates cells and inhibits cytoskeleton polymerization, was applied to one of the identified proteins, it repaired cilium formation in cells carrying mutations.

"While the use of cytochalasin D is not a viable solution in patients because of its toxicity, we now know that pharmacological solutions for ciliopathy exist," said Kim.

The research team intends to continue searching for "cleaner" small molecules, which can be utilized for ciliopathy treatment.

Additional contributors to the study include Ji Eun Lee of UC San Diego, School of Medicine, Department of Neurosciences; Keiichiro Ono, KiYoung Lee, and Trey Ideker of UC San Diego School of Medicine and Bioengineering; Susanne Heynen, Eigo Suyama, and Pedro Aza-Blanc of Sanford-Burnham Institute for Medical Research.

This study was funded in part by the National Institutes of Health, the National Alliance for Research on Schizophrenia and Depression, and the Howard Hughes Medical Institute.

Jamee Lynn Smith | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>