Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Primary cilia formation provides insight into genetic diseases

15.04.2010
Identification of protein targets and genes may be key to possible drug therapies for ciliopathies

A team of scientists at the University of California, San Diego School of Medicine have identified a network of genes that initiate and manage cilia formation. Although scientists have known about cilia for decades, only recently have they discovered their role in disease. This new discovery, which may lead to new therapies for ciliopathies, will appear in the April 15 edition of Nature.

Primary cilia are small, hair-like appendages attached to the surface of human cells. They act like antennae, sensing and evaluating extracellular signals to coordinate the development and stability of a wide variety of organs. Ciliopathies are a newly emerging group of genetic diseases caused by defects in the function or structure of cellular primary cilia. These diseases present symptoms such as mental retardation, retinal blindness, obesity, polycystic kidney disease, liver fibrosis, ataxia and some forms of cancer.

The scientists, led by Joe Gleeson, MD, professor of neurosciences and pediatrics at UC San Diego and a Howard Hughes Medical Institute Investigator, and Joon Kim, a UC San Diego postdoctoral fellow, utilized a high-throughput, cell-based screen to evaluate the impact of more than 8,000 genes and their relation to cilia function and development.

"Utilizing high-throughput screening, we were able view a wider array of the genes implicated in ciliopathies and enact systematic approaches, which enabled us to gain deeper insight into the molecular mechanisms of cilia formation," said Gleeson.

Additional investigation revealed that the endocytic recycling pathway, which absorbs and processes plasma membrane, also plays a key role in primary cilia formation. The scientists also identified protein groups that are key modulators between cilia and the endocytic recycling pathway. These findings suggest that there are specific protein targets for the development of ciliopathy therapy, according to Gleeson.

When cytochalasin D, a small molecule which permeates cells and inhibits cytoskeleton polymerization, was applied to one of the identified proteins, it repaired cilium formation in cells carrying mutations.

"While the use of cytochalasin D is not a viable solution in patients because of its toxicity, we now know that pharmacological solutions for ciliopathy exist," said Kim.

The research team intends to continue searching for "cleaner" small molecules, which can be utilized for ciliopathy treatment.

Additional contributors to the study include Ji Eun Lee of UC San Diego, School of Medicine, Department of Neurosciences; Keiichiro Ono, KiYoung Lee, and Trey Ideker of UC San Diego School of Medicine and Bioengineering; Susanne Heynen, Eigo Suyama, and Pedro Aza-Blanc of Sanford-Burnham Institute for Medical Research.

This study was funded in part by the National Institutes of Health, the National Alliance for Research on Schizophrenia and Depression, and the Howard Hughes Medical Institute.

Jamee Lynn Smith | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>