Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Previously Unknown Protein Subunits of GABAB Receptors Identified

20.04.2010
Neurobiologists in Freiburg and Basel Discover Long-Sought Protein Subunits of One of the Most Important Receptors of the Central Nervous System

In the latest issue of the renowned scientific journal "Nature" researchers from the universities of Freiburg and Basel report on their discovery of previously unknown subunits of the GABAB receptors in the central nervous system. GABAB receptors are transmembrane proteins in nerve cells which are of fundamental significance for the functioning of the brain and have great therapeutical and pharmaceutical importance.

A team of scientists led by Prof. Dr. Bernd Fakler from the Institute of Physiology of the University of Freiburg and the Centre for Biological Signalling Studies BIOSS and Prof. Dr. Bernhard Bettler from the Department of Biomedicine of the University of Basel succeeded in conducting a comprehensive analysis of the composition of the brain's GABAB receptors.

In the process the team identified four new components of the GABAB receptor complexes: the so-called KCTD proteins, members of a gene family which has not yet been described. The researchers were able to demonstrate that the KCTD proteins determine both the pharmacological and the biophysical characteristics of the GABAB receptors. Among other things, the newly identified proteins explain why the previously known subunits could not reproduce the characteristics of the brain receptors.

GABA (= gamma-amino-butyric acid) receptors are the most important inhibitory neurotransmitter receptors of the central nervous system. They prevent the nerve cells from overly strong activation, which can lead to neurological and psychiatric illnesses such as convulsions, depression, or anxiety. There are currently two known types of GABA receptors, the GABAA and GABAB receptors. GABAA receptors are responsible for rapid inhibition of the brain and are the main site of action of important drugs like valium, which is used to treat anxiety conditions, in the therapy of epileptic seizures, and as a sleeping aid. GABAB receptors are important for more long-term inhibition of the nerve cells. Drugs which activate GABAB receptors are used to treat spinal cord injuries and multiple sclerosis as well as in therapies for addiction and narcolepsy.

The findings published in "Nature" could be of great therapeutical use. Scientists believe that it will soon be possible to develop drugs which selectively influence a particular subtype of receptor. The advantages of such drugs could include a reduction in side effects as well as entirely new therapeutic applications.

In addition to these applications, there is another reason why the research of the physiologists in Freiburg and Basel is of great interest for the pharmaceutical industry: GABAB receptors belong to the family of G-protein coupled receptors (GPCRs), the largest and most diverse group of membrane receptors. GPCRs are a crucial factor for many common drugs: Approximately 60 of all prescription drugs currently on the market act on these receptors. The discovery that the structure of GPCRs is more complex than previously thought and that they include additional specific subunits which have decisive influence on their signal transduction could greatly increase the amount of different types of GPCRs, and thus also of possible target proteins for drugs.

Publication:
Nature: Native GABAB receptors are heteromultimers with a family of auxiliary subunits.
Jochen Schwenk1, Michaela Metz2, Gerd Zolles1, Rostislav Turecek2,6, Thorsten Fritzius2, Wolfgang Bildl1, Etsuko Tarusawa4, Akos Kulik4, Andreas Unger4, Klara Ivankova2, Riad Seddik2, Jim Y. Tiao2, Mathieu Rajalu2, Johana Trojanova6, Volker Rohde3, Martin Gassmann2, Uwe Schulte1,3, Bernd Fakler1,5, Bernhard Bettler2

Published online: 18 April 2010, doi:10.1038/nature08964

1 Institute of Physiology II, University of Freiburg, Engesserstr. 4, 79108 Freiburg, Germany
2 Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Klingelbergstr. 50/70, CH-4056 Basel, Switzerland
3 Logopharm GmbH, Engesserstr. 4, 79108 Freiburg, Germany
4 Institute of Anatomy and Cell Biology, University of Freiburg, Albertstr. 23, 79104 Freiburg, Germany
5 Centre for Biological Signalling Studies (bioss), Albertstr. 10, 79104 Freiburg, Germany

6 Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 14220-Prague 4, Czech Republic

Contact:
Prof. Dr. Bernd Fakler
Institute of Physiology and Centre for Biological Signalling Studies (bioss)
University of Freiburg
Phone: 0761/203-5175
Email: bernd.fakler@physiologie.uni-freiburg.de

Rudolf-Werner Dreier | idw
Further information:
http://www.uni-freiburg.de

Further reports about: GABAA GABAB GPCRs Protein biomedicine central nervous system nerve cell nervous system

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>