Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Previously Unknown Protein Subunits of GABAB Receptors Identified

20.04.2010
Neurobiologists in Freiburg and Basel Discover Long-Sought Protein Subunits of One of the Most Important Receptors of the Central Nervous System

In the latest issue of the renowned scientific journal "Nature" researchers from the universities of Freiburg and Basel report on their discovery of previously unknown subunits of the GABAB receptors in the central nervous system. GABAB receptors are transmembrane proteins in nerve cells which are of fundamental significance for the functioning of the brain and have great therapeutical and pharmaceutical importance.

A team of scientists led by Prof. Dr. Bernd Fakler from the Institute of Physiology of the University of Freiburg and the Centre for Biological Signalling Studies BIOSS and Prof. Dr. Bernhard Bettler from the Department of Biomedicine of the University of Basel succeeded in conducting a comprehensive analysis of the composition of the brain's GABAB receptors.

In the process the team identified four new components of the GABAB receptor complexes: the so-called KCTD proteins, members of a gene family which has not yet been described. The researchers were able to demonstrate that the KCTD proteins determine both the pharmacological and the biophysical characteristics of the GABAB receptors. Among other things, the newly identified proteins explain why the previously known subunits could not reproduce the characteristics of the brain receptors.

GABA (= gamma-amino-butyric acid) receptors are the most important inhibitory neurotransmitter receptors of the central nervous system. They prevent the nerve cells from overly strong activation, which can lead to neurological and psychiatric illnesses such as convulsions, depression, or anxiety. There are currently two known types of GABA receptors, the GABAA and GABAB receptors. GABAA receptors are responsible for rapid inhibition of the brain and are the main site of action of important drugs like valium, which is used to treat anxiety conditions, in the therapy of epileptic seizures, and as a sleeping aid. GABAB receptors are important for more long-term inhibition of the nerve cells. Drugs which activate GABAB receptors are used to treat spinal cord injuries and multiple sclerosis as well as in therapies for addiction and narcolepsy.

The findings published in "Nature" could be of great therapeutical use. Scientists believe that it will soon be possible to develop drugs which selectively influence a particular subtype of receptor. The advantages of such drugs could include a reduction in side effects as well as entirely new therapeutic applications.

In addition to these applications, there is another reason why the research of the physiologists in Freiburg and Basel is of great interest for the pharmaceutical industry: GABAB receptors belong to the family of G-protein coupled receptors (GPCRs), the largest and most diverse group of membrane receptors. GPCRs are a crucial factor for many common drugs: Approximately 60 of all prescription drugs currently on the market act on these receptors. The discovery that the structure of GPCRs is more complex than previously thought and that they include additional specific subunits which have decisive influence on their signal transduction could greatly increase the amount of different types of GPCRs, and thus also of possible target proteins for drugs.

Publication:
Nature: Native GABAB receptors are heteromultimers with a family of auxiliary subunits.
Jochen Schwenk1, Michaela Metz2, Gerd Zolles1, Rostislav Turecek2,6, Thorsten Fritzius2, Wolfgang Bildl1, Etsuko Tarusawa4, Akos Kulik4, Andreas Unger4, Klara Ivankova2, Riad Seddik2, Jim Y. Tiao2, Mathieu Rajalu2, Johana Trojanova6, Volker Rohde3, Martin Gassmann2, Uwe Schulte1,3, Bernd Fakler1,5, Bernhard Bettler2

Published online: 18 April 2010, doi:10.1038/nature08964

1 Institute of Physiology II, University of Freiburg, Engesserstr. 4, 79108 Freiburg, Germany
2 Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Klingelbergstr. 50/70, CH-4056 Basel, Switzerland
3 Logopharm GmbH, Engesserstr. 4, 79108 Freiburg, Germany
4 Institute of Anatomy and Cell Biology, University of Freiburg, Albertstr. 23, 79104 Freiburg, Germany
5 Centre for Biological Signalling Studies (bioss), Albertstr. 10, 79104 Freiburg, Germany

6 Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 14220-Prague 4, Czech Republic

Contact:
Prof. Dr. Bernd Fakler
Institute of Physiology and Centre for Biological Signalling Studies (bioss)
University of Freiburg
Phone: 0761/203-5175
Email: bernd.fakler@physiologie.uni-freiburg.de

Rudolf-Werner Dreier | idw
Further information:
http://www.uni-freiburg.de

Further reports about: GABAA GABAB GPCRs Protein biomedicine central nervous system nerve cell nervous system

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>