Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Preventing overreactions

Identification of the transcription factor that regulates a protein that dampens immune responses could aid the fight against autoimmune disease

Interleukin-10 (IL-10) is an anti-inflammatory cytokine protein that reduces immune responses and staves off autoimmune disease. Now, a research team led by Masato Kubo at the RIKEN Research Center for Allergy and Immunology, Yokohama, has identified a transcription factor called E4 promoter-binding protein (E4BP4) that is responsible for driving the expression of IL-10 in multiple types of immune cells[1].

Figure 1: In T cells stained blue (top left), the transcription factor E4BP4 (red) regulates that production of IL-13 (green) and IL-10 (not shown)
Copyright : Yasutaka Motomura et al.

The researchers investigated E4BP4 because of a unique property of a subset of immune cells called T helper type 1 (TH1) cells, which generally enhance immune responses by secreting pro-inflammatory cytokines. However, under chronic stimulation with foreign antigens—that occur during chronic infection—TH1 cells can also produce cytokines, such as IL-10 and IL-13, which are normally made only by other immune-cell types. While the immune system is fighting the infection, IL-13 modulates allergic responses, and IL-10 prevents the immune system from attacking the body.

Kubo and colleagues compared genes expressed in TH1 cells with and without chronic antigen stimulation, and found that E4BP4 was expressed only in instances of chronic antigen stimulation. When they expressed E4BP4 in TH1 cells that had not been chronically infected, it induced production of IL-10 and IL-13 in conditions in which those cytokines would not normally occur (Fig. 1). E4BP4-deficient TH1 cells could not increase expression of IL-10 and IL-13 after chronic antigen stimulation. The researchers found that other T cell subsets also required E4BP4 to modulate the expression of IL-10, but not IL-13.

Transcription factors can control the expression of genes by binding to a region on the genomic DNA called the promoter. Kubo and colleagues observed that E4BP4 bound to the IL-13 promoter in TH1 cells that had been chronically stimulated with antigen. No binding occurred with TH1 cells lacking chronic stimulation. Kubo explains, however, that: “E4BP4 seems to regulate the expression of IL-10 in a totally different way—by altering the chromosomal structure in the region of that gene.”

Mice lacking IL-10 can spontaneously develop intestinal autoimmune disease. Interestingly, Kubo and his team found that E4BP4-deficient mice produced lower levels of IL-10 than control mice, and showed some symptoms of gastrointestinal inflammation along with diarrhea. The mice lacking E4BP4 also developed more severe symptoms of a neurological autoimmune disease caused by exposure to brain antigens. E4BP4 is therefore a key factor in preventing the immune system from attacking the body’s own organs, and “induction of expression of E4BP4 may cure many types of autoimmune inflammatory diseases,” says Kubo.

The corresponding author for this highlight is based at the Open Laboratory for Allergy Research, RIKEN Research Center for Allergy and Immunology

Journal information

[1] Motomura, Y., Kitamura, H., Hijikata, A., Matsunaga, Y., Matsumoto, K., Inoue, H., Atarashi, K., Hori, S., Watarai, J., Zhu, J., Taniguchi, M. & Kubo, M. The transcription factor E4BP4 regulations the production of IL-10 and IL-13 in CD4+ T cells. Nature Immunology 12, 450–459 (2011).

gro-pr | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>