Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preventing overreactions

20.06.2011
Identification of the transcription factor that regulates a protein that dampens immune responses could aid the fight against autoimmune disease

Interleukin-10 (IL-10) is an anti-inflammatory cytokine protein that reduces immune responses and staves off autoimmune disease. Now, a research team led by Masato Kubo at the RIKEN Research Center for Allergy and Immunology, Yokohama, has identified a transcription factor called E4 promoter-binding protein (E4BP4) that is responsible for driving the expression of IL-10 in multiple types of immune cells[1].


Figure 1: In T cells stained blue (top left), the transcription factor E4BP4 (red) regulates that production of IL-13 (green) and IL-10 (not shown)
Copyright : Yasutaka Motomura et al.

The researchers investigated E4BP4 because of a unique property of a subset of immune cells called T helper type 1 (TH1) cells, which generally enhance immune responses by secreting pro-inflammatory cytokines. However, under chronic stimulation with foreign antigens—that occur during chronic infection—TH1 cells can also produce cytokines, such as IL-10 and IL-13, which are normally made only by other immune-cell types. While the immune system is fighting the infection, IL-13 modulates allergic responses, and IL-10 prevents the immune system from attacking the body.

Kubo and colleagues compared genes expressed in TH1 cells with and without chronic antigen stimulation, and found that E4BP4 was expressed only in instances of chronic antigen stimulation. When they expressed E4BP4 in TH1 cells that had not been chronically infected, it induced production of IL-10 and IL-13 in conditions in which those cytokines would not normally occur (Fig. 1). E4BP4-deficient TH1 cells could not increase expression of IL-10 and IL-13 after chronic antigen stimulation. The researchers found that other T cell subsets also required E4BP4 to modulate the expression of IL-10, but not IL-13.

Transcription factors can control the expression of genes by binding to a region on the genomic DNA called the promoter. Kubo and colleagues observed that E4BP4 bound to the IL-13 promoter in TH1 cells that had been chronically stimulated with antigen. No binding occurred with TH1 cells lacking chronic stimulation. Kubo explains, however, that: “E4BP4 seems to regulate the expression of IL-10 in a totally different way—by altering the chromosomal structure in the region of that gene.”

Mice lacking IL-10 can spontaneously develop intestinal autoimmune disease. Interestingly, Kubo and his team found that E4BP4-deficient mice produced lower levels of IL-10 than control mice, and showed some symptoms of gastrointestinal inflammation along with diarrhea. The mice lacking E4BP4 also developed more severe symptoms of a neurological autoimmune disease caused by exposure to brain antigens. E4BP4 is therefore a key factor in preventing the immune system from attacking the body’s own organs, and “induction of expression of E4BP4 may cure many types of autoimmune inflammatory diseases,” says Kubo.

The corresponding author for this highlight is based at the Open Laboratory for Allergy Research, RIKEN Research Center for Allergy and Immunology

Journal information

[1] Motomura, Y., Kitamura, H., Hijikata, A., Matsunaga, Y., Matsumoto, K., Inoue, H., Atarashi, K., Hori, S., Watarai, J., Zhu, J., Taniguchi, M. & Kubo, M. The transcription factor E4BP4 regulations the production of IL-10 and IL-13 in CD4+ T cells. Nature Immunology 12, 450–459 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>