Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prevent This!

24.05.2012
Efficient Preparation of a Set of Potential Glycosidase Inhibitors

In many biological and pathological processes, glycosidase enzymes attack glycosidic bonds in carbohydrates, glycoproteins, and glycolipids. The ability to modify or block these processes by specific glycosidase inhibitors forms the basis for their potential use in the treatment of viral infections, cancer, and genetic disorders.

A Dutch team led by Herman S. Overkleeft has now developed a method that allows the synthesis of 8 of the 16 possible configurational isomers of the inhibitor candidate deoxynojirimycin, which will allow comprehensive medicinal chemistry screening of this library. As the scientists report in the European Journal of Organic Chemistry, their technique requires the use of a common precursor to prepare all eight compounds of biological interest.

Deoxynojirimycin and its derivatives have been long pursued by organic and medicinal chemists as a result of their potential as glycosidase inhibitors. Many groups now pursue these compounds for their application in the treatment of genetic disorders and type II diabetes. Consequently, many synthetic studies on deoxynojirimycins have appeared and continue to appear; however, synthetic strategies that allow different configurational isomers to be prepared in a concise fashion are scarce.

This synthesis of such a library is important so that the compounds can be studied side by side. This technique can give chemists important insight into which structural features lead to higher levels of biological activity.

The scientists' procedure involves the use of a common cyanohydrin as the starting material, which is easily accessible in large quantities. The cyanohydrin is then transformed into cyclic building blocks from which the individual isomers can be assembled by using typical organic transformations. This work complements the large body of literature on the synthesis of 1-deoxynojirimycin derivatives with the distinguishing feature that eight stereoisomers of this important class of glycosidase inhibitors can be derived from a common precursor in an efficient manner. This team is therefore well on its way to helping scientists screen a diverse range of potential drugs that may lead to the treatment of important diseases.

Author: Herman S. Overkleeft, Universiteit Leiden (The Netherlands), http://biosyn.lic.leidenuniv.nl/people/overkleeft
Title: Synthesis of Eight 1-Deoxynojirimycin Isomers from a Single Chiral Cyanohydrin

European Journal of Organic Chemistry, Permalink to the article: http://dx.doi.org/10.1002/ejoc.2012003

Herman S. Overkleeft | Wiley-VCH
Further information:
http://www.wiley.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>