Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pressure-cooking algae into a better biofuel

23.04.2010
Heating and squishing microalgae in a pressure-cooker can fast-forward the crude-oil-making process from millennia to minutes.

University of Michigan professors are working to understand and improve this procedure in an effort to speed up development of affordable biofuels that could replace fossil fuels and power today's engines.

They are also examining the possibility of other new fuel sources such as E. coli bacteria that would feed on waste products from previous bio-oil batches.

"The vision is that nothing would leave the refinery except oil. Everything would get reused. That's one of the things that makes this project novel. It's an integrated process. We're combining hydrothermal, catalytic and biological approaches," said Phillip Savage, an Arthur F. Thurnau Professor in the U-M Department of Chemical Engineering and principal investigator on the $2-million National Science Foundation grant that supports this project. The grant is funded under the American Recovery and Reinvestment Act.

"This research could play a major role in the nation's transition toward energy independence and reduced carbon dioxide emissions from the energy sector," Savage said.

Microalgae are microscopic species of algae: simple, floating plants that don't have leaves, roots or stems. They break down more easily than other potential biofuel source plants because they don't have tough cell walls, Savage said.

Unlike fossil fuels, algae-based biofuels are carbon-neutral. The algae feed on carbon dioxide in the air, and this gets released when the biofuel is burned. Fossil fuel combustion puffs additional carbon into the air without ever taking any back.

The pressure-cooker method the U-M researchers are studying bucks the trend in algae-to-fuel processing. The conventional technique involves cultivating special, oily types of algae, drying the algae and then extracting its oil.

The hydrothermal process this project employs allows researchers to start with less-oily types of algae. The process also eliminates the need to dry it, overcoming two major barriers to large-scale conversion of microalgae to liquid fuels.

"We make an algae soup," Savage said. "We heat it to about 300 degrees and keep the water at high enough pressure to keep it liquid as opposed to steam. We cook it for 30 minutes to an hour and we get a crude bio-oil."

The high temperature and pressure allows the algae to react with the water and break down. Not only does the native oil get released, but proteins and carbohydrates also decompose and add to the fuel yield.

"We're trying to do what nature does when it creates oil, but we don't want to wait millions of years," Savage said. "The hard part is taking the tar that comes out of the pressure cooker and turning it into something you could put in your car, changing the properties so it can flow more easily, and doing it in a way that's affordable."

Savage and his colleagues are taking a broad and deep look at this process. They are investigating ways to use catalysts to bump up the energy density of the resulting bio-oil, thin it into a flowing material and also clean it up by reducing its sulfur and nitrogen content.

Furthermore, they're examining the process from a life-cycle perspective, seeking to recycle waste products to grow new source material for future fuel batches. This doesn't have to be algae, Savage said. It could be any "wet biomass." They are working on growing in their experiments' waste products E. coli that they could potentially use along with algae.

Other collaborators are: Gregory Keoleian, professor of sustainable systems in the School of Natural Resources and Environment and in the Department of Civil and Environmental Engineering; Adam Matzger professor in the Department of Chemistry; Suljo Linic, assistant professor in the Department of Chemical Engineering; Nina Lin, assistant professor in the departments of Chemical Engineering and Biomedical Engineering; Nancy Love, professor and chair of the Department of Civil and Environmental Engineering; and Henry Wang, professor in the departments of Chemical Engineering and Biomedical Engineering.

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At $160 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Find out more at http://www.engin.umich.edu/.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.engin.umich.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>