Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pressure-cooking algae into a better biofuel

Heating and squishing microalgae in a pressure-cooker can fast-forward the crude-oil-making process from millennia to minutes.

University of Michigan professors are working to understand and improve this procedure in an effort to speed up development of affordable biofuels that could replace fossil fuels and power today's engines.

They are also examining the possibility of other new fuel sources such as E. coli bacteria that would feed on waste products from previous bio-oil batches.

"The vision is that nothing would leave the refinery except oil. Everything would get reused. That's one of the things that makes this project novel. It's an integrated process. We're combining hydrothermal, catalytic and biological approaches," said Phillip Savage, an Arthur F. Thurnau Professor in the U-M Department of Chemical Engineering and principal investigator on the $2-million National Science Foundation grant that supports this project. The grant is funded under the American Recovery and Reinvestment Act.

"This research could play a major role in the nation's transition toward energy independence and reduced carbon dioxide emissions from the energy sector," Savage said.

Microalgae are microscopic species of algae: simple, floating plants that don't have leaves, roots or stems. They break down more easily than other potential biofuel source plants because they don't have tough cell walls, Savage said.

Unlike fossil fuels, algae-based biofuels are carbon-neutral. The algae feed on carbon dioxide in the air, and this gets released when the biofuel is burned. Fossil fuel combustion puffs additional carbon into the air without ever taking any back.

The pressure-cooker method the U-M researchers are studying bucks the trend in algae-to-fuel processing. The conventional technique involves cultivating special, oily types of algae, drying the algae and then extracting its oil.

The hydrothermal process this project employs allows researchers to start with less-oily types of algae. The process also eliminates the need to dry it, overcoming two major barriers to large-scale conversion of microalgae to liquid fuels.

"We make an algae soup," Savage said. "We heat it to about 300 degrees and keep the water at high enough pressure to keep it liquid as opposed to steam. We cook it for 30 minutes to an hour and we get a crude bio-oil."

The high temperature and pressure allows the algae to react with the water and break down. Not only does the native oil get released, but proteins and carbohydrates also decompose and add to the fuel yield.

"We're trying to do what nature does when it creates oil, but we don't want to wait millions of years," Savage said. "The hard part is taking the tar that comes out of the pressure cooker and turning it into something you could put in your car, changing the properties so it can flow more easily, and doing it in a way that's affordable."

Savage and his colleagues are taking a broad and deep look at this process. They are investigating ways to use catalysts to bump up the energy density of the resulting bio-oil, thin it into a flowing material and also clean it up by reducing its sulfur and nitrogen content.

Furthermore, they're examining the process from a life-cycle perspective, seeking to recycle waste products to grow new source material for future fuel batches. This doesn't have to be algae, Savage said. It could be any "wet biomass." They are working on growing in their experiments' waste products E. coli that they could potentially use along with algae.

Other collaborators are: Gregory Keoleian, professor of sustainable systems in the School of Natural Resources and Environment and in the Department of Civil and Environmental Engineering; Adam Matzger professor in the Department of Chemistry; Suljo Linic, assistant professor in the Department of Chemical Engineering; Nina Lin, assistant professor in the departments of Chemical Engineering and Biomedical Engineering; Nancy Love, professor and chair of the Department of Civil and Environmental Engineering; and Henry Wang, professor in the departments of Chemical Engineering and Biomedical Engineering.

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At $160 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Find out more at

Nicole Casal Moore | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>