Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preservation of wine without sulphite addition

28.05.2014

In order to avoid wine spoilage, most wineries add sulphur dioxide to the wine. However, sulphites dissolved in the wine can potentially cause allergies. An alternative preservation method without or with significantly reduced sulphite addition has been developed by an international consortium within the EU-funded project "PreserveWine-DEMO", in which the Fraunhofer IGB is involved.

A good glass of wine is a byword for quality of life – not just for connoisseurs. In order to avoid wine spoilage, wineries mostly add sulphur dioxide during the winemaking process. However, the sulphites that dissolve in wine can cause allergic reactions – including asthma. Within the EU they must therefore be declared as an ingredient on the label and the limits for sulphites in wine have been reduced.


In the EU-funded PreserveWine-DEMO project a process for the preservation of wine using pressure change technology is developed by the Fraunhofer IGB together with Edecto company and other partners.

© Fraunhofer IGB

Sulphites unfold their preservative action in two ways. On the one hand they inactivate microorganisms, such as unwanted yeasts, acetic acid bacteria and lactic acid bacteria, thus protecting wine from spoilage. Secondly, they act as antioxidants and protect delicate flavours against oxidation. Both effects ensure that wine is preserved and can be stored for ageing.

Conventional alternative physical preservation methods such as filtration are suited for wine only to a limited extent, because they also remove colour and valuable flavours. Other methods operating at high temperatures, such as pasteurization, are unsuited as they destroy heat-sensitive ingredients.

A new method for preservation of liquid foods, working at moderate temperatures and therefore referred to as "cold pasteurization", is the so-called pressure change technology, which has been developed and patented by the Dresden company Edecto for fruit juice within the framework of a nationally funded project .

"The physical process has effects similar to those of sulphurization of the wine: growth of microorganisms is prevented because the cells are mechanically disrupted. In addition, the protective atmosphere of an inert gas decreases oxidation reactions, so drinks are stabilized," explains Edith Klingner, a physicist at Edecto, who coordinates the EU-funded project "PreserveWine-DEMO".

In the initial PreserveWine project, international partners including Edecto investigated whether the new method can also be applied to wine. At the Fraunhofer IGB a batch plant was modified and on the basis of initial results a continuous plant was developed and built. The TÜV-approved pilot plant can treat up to 120 litres of wine per hour at a pressure of 250 to 500 bar and at temperatures below 40°C.

The results are promising for the treatment of white wine as well as red wine. “Unwanted oxidizing enzymes are inactivated, while neither temperature-sensitive ingredients nor colour and taste are altered by the treatment," confirms Dr. Ana Lucía Vásquez-Caicedo, food technologist and group manager at the Fraunhofer IGB.

In the pressure change technology a chemically inert gas, such as nitrogen or argon, is dissolved at high pressure in the liquid to be preserved. When the liquid is exposed to a high pressure of up to 500 bar, the solubility of the gas increases in the liquid. As a result, the dissolved gas also diffuses into the microbial cells. When the pressure is finally abruptly decreased, the gas expands – even within the cells – and causes these to burst. The previously dissolved gas then goes back into the gas phase and is recovered for reuse.

"In studies at the Fraunhofer IGB and our partner institute ADERA we have shown that the colour of the wine is maintained over time during storage in barrels or bottles. In wine tastings, we found that the taste is not affected," says Vásquez-Caicedo. The new preservation method can be used in different stages of wine production: after vinification (wine pressing) of white wine, after the alcoholic fermentation, after the malolactic fermentation employed mainly in red wine for acid degradation as well as when racking and filling.

In the follow-up project "PreserveWine-DEMO" the process will be transferred as a winery process to industrial scale. To this end, the researchers want to build a mobile plant that can be tested on site in various wineries. In parallel, the consortium aims to ensure product quality and process feasibility and wants to examine consumer acceptance of the new technology.

The previous results have been achieved in the project "PreserveWine" (Grant Agreement No. 262507), which was funded from December 2010 to November 2012 in the European Union’s 7th Research Framework Programme. The follow-up project "PreserveWine-DEMO – Demonstration of a non-thermal process to replace use of sulphites and other chemical preservatives in European wines to meet new European Directive" (Grant Agreement No. 606569) has been funded in the EU’s 7th Research Framework Programme since January 2014. Project partners are the Fraunhofer IGB (Germany) and the Association pour le Développement de l'Enseignement et des Recherches auprès des Universités des Centres de Recherche et des Entreprises d'Aquitaine (France) as research partners, the companies Edecto (Germany), Statiflo (UK), Uvasol (UK) and Malthe Winje (Norway) as technology suppliers, the Société Civile Agricole du Château Guiraud (France) as a user as well as the winery association Comité de la Communauté économique Européenne Industries Commerce Vins (Belgium).

Weitere Informationen:

http://www.igb.fraunhofer.de/en/press-media/press-releases/2014/preserve-wine.ht...

Dr. Claudia Vorbeck | Fraunhofer-Institut

Further reports about: PreserveWine-DEMO acid pressure spoilage temperatures wine winemaking process

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>