Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preservation of wine without sulphite addition

28.05.2014

In order to avoid wine spoilage, most wineries add sulphur dioxide to the wine. However, sulphites dissolved in the wine can potentially cause allergies. An alternative preservation method without or with significantly reduced sulphite addition has been developed by an international consortium within the EU-funded project "PreserveWine-DEMO", in which the Fraunhofer IGB is involved.

A good glass of wine is a byword for quality of life – not just for connoisseurs. In order to avoid wine spoilage, wineries mostly add sulphur dioxide during the winemaking process. However, the sulphites that dissolve in wine can cause allergic reactions – including asthma. Within the EU they must therefore be declared as an ingredient on the label and the limits for sulphites in wine have been reduced.


In the EU-funded PreserveWine-DEMO project a process for the preservation of wine using pressure change technology is developed by the Fraunhofer IGB together with Edecto company and other partners.

© Fraunhofer IGB

Sulphites unfold their preservative action in two ways. On the one hand they inactivate microorganisms, such as unwanted yeasts, acetic acid bacteria and lactic acid bacteria, thus protecting wine from spoilage. Secondly, they act as antioxidants and protect delicate flavours against oxidation. Both effects ensure that wine is preserved and can be stored for ageing.

Conventional alternative physical preservation methods such as filtration are suited for wine only to a limited extent, because they also remove colour and valuable flavours. Other methods operating at high temperatures, such as pasteurization, are unsuited as they destroy heat-sensitive ingredients.

A new method for preservation of liquid foods, working at moderate temperatures and therefore referred to as "cold pasteurization", is the so-called pressure change technology, which has been developed and patented by the Dresden company Edecto for fruit juice within the framework of a nationally funded project .

"The physical process has effects similar to those of sulphurization of the wine: growth of microorganisms is prevented because the cells are mechanically disrupted. In addition, the protective atmosphere of an inert gas decreases oxidation reactions, so drinks are stabilized," explains Edith Klingner, a physicist at Edecto, who coordinates the EU-funded project "PreserveWine-DEMO".

In the initial PreserveWine project, international partners including Edecto investigated whether the new method can also be applied to wine. At the Fraunhofer IGB a batch plant was modified and on the basis of initial results a continuous plant was developed and built. The TÜV-approved pilot plant can treat up to 120 litres of wine per hour at a pressure of 250 to 500 bar and at temperatures below 40°C.

The results are promising for the treatment of white wine as well as red wine. “Unwanted oxidizing enzymes are inactivated, while neither temperature-sensitive ingredients nor colour and taste are altered by the treatment," confirms Dr. Ana Lucía Vásquez-Caicedo, food technologist and group manager at the Fraunhofer IGB.

In the pressure change technology a chemically inert gas, such as nitrogen or argon, is dissolved at high pressure in the liquid to be preserved. When the liquid is exposed to a high pressure of up to 500 bar, the solubility of the gas increases in the liquid. As a result, the dissolved gas also diffuses into the microbial cells. When the pressure is finally abruptly decreased, the gas expands – even within the cells – and causes these to burst. The previously dissolved gas then goes back into the gas phase and is recovered for reuse.

"In studies at the Fraunhofer IGB and our partner institute ADERA we have shown that the colour of the wine is maintained over time during storage in barrels or bottles. In wine tastings, we found that the taste is not affected," says Vásquez-Caicedo. The new preservation method can be used in different stages of wine production: after vinification (wine pressing) of white wine, after the alcoholic fermentation, after the malolactic fermentation employed mainly in red wine for acid degradation as well as when racking and filling.

In the follow-up project "PreserveWine-DEMO" the process will be transferred as a winery process to industrial scale. To this end, the researchers want to build a mobile plant that can be tested on site in various wineries. In parallel, the consortium aims to ensure product quality and process feasibility and wants to examine consumer acceptance of the new technology.

The previous results have been achieved in the project "PreserveWine" (Grant Agreement No. 262507), which was funded from December 2010 to November 2012 in the European Union’s 7th Research Framework Programme. The follow-up project "PreserveWine-DEMO – Demonstration of a non-thermal process to replace use of sulphites and other chemical preservatives in European wines to meet new European Directive" (Grant Agreement No. 606569) has been funded in the EU’s 7th Research Framework Programme since January 2014. Project partners are the Fraunhofer IGB (Germany) and the Association pour le Développement de l'Enseignement et des Recherches auprès des Universités des Centres de Recherche et des Entreprises d'Aquitaine (France) as research partners, the companies Edecto (Germany), Statiflo (UK), Uvasol (UK) and Malthe Winje (Norway) as technology suppliers, the Société Civile Agricole du Château Guiraud (France) as a user as well as the winery association Comité de la Communauté économique Européenne Industries Commerce Vins (Belgium).

Weitere Informationen:

http://www.igb.fraunhofer.de/en/press-media/press-releases/2014/preserve-wine.ht...

Dr. Claudia Vorbeck | Fraunhofer-Institut

Further reports about: PreserveWine-DEMO acid pressure spoilage temperatures wine winemaking process

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>