Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Preservation of wine without sulphite addition


In order to avoid wine spoilage, most wineries add sulphur dioxide to the wine. However, sulphites dissolved in the wine can potentially cause allergies. An alternative preservation method without or with significantly reduced sulphite addition has been developed by an international consortium within the EU-funded project "PreserveWine-DEMO", in which the Fraunhofer IGB is involved.

A good glass of wine is a byword for quality of life – not just for connoisseurs. In order to avoid wine spoilage, wineries mostly add sulphur dioxide during the winemaking process. However, the sulphites that dissolve in wine can cause allergic reactions – including asthma. Within the EU they must therefore be declared as an ingredient on the label and the limits for sulphites in wine have been reduced.

In the EU-funded PreserveWine-DEMO project a process for the preservation of wine using pressure change technology is developed by the Fraunhofer IGB together with Edecto company and other partners.

© Fraunhofer IGB

Sulphites unfold their preservative action in two ways. On the one hand they inactivate microorganisms, such as unwanted yeasts, acetic acid bacteria and lactic acid bacteria, thus protecting wine from spoilage. Secondly, they act as antioxidants and protect delicate flavours against oxidation. Both effects ensure that wine is preserved and can be stored for ageing.

Conventional alternative physical preservation methods such as filtration are suited for wine only to a limited extent, because they also remove colour and valuable flavours. Other methods operating at high temperatures, such as pasteurization, are unsuited as they destroy heat-sensitive ingredients.

A new method for preservation of liquid foods, working at moderate temperatures and therefore referred to as "cold pasteurization", is the so-called pressure change technology, which has been developed and patented by the Dresden company Edecto for fruit juice within the framework of a nationally funded project .

"The physical process has effects similar to those of sulphurization of the wine: growth of microorganisms is prevented because the cells are mechanically disrupted. In addition, the protective atmosphere of an inert gas decreases oxidation reactions, so drinks are stabilized," explains Edith Klingner, a physicist at Edecto, who coordinates the EU-funded project "PreserveWine-DEMO".

In the initial PreserveWine project, international partners including Edecto investigated whether the new method can also be applied to wine. At the Fraunhofer IGB a batch plant was modified and on the basis of initial results a continuous plant was developed and built. The TÜV-approved pilot plant can treat up to 120 litres of wine per hour at a pressure of 250 to 500 bar and at temperatures below 40°C.

The results are promising for the treatment of white wine as well as red wine. “Unwanted oxidizing enzymes are inactivated, while neither temperature-sensitive ingredients nor colour and taste are altered by the treatment," confirms Dr. Ana Lucía Vásquez-Caicedo, food technologist and group manager at the Fraunhofer IGB.

In the pressure change technology a chemically inert gas, such as nitrogen or argon, is dissolved at high pressure in the liquid to be preserved. When the liquid is exposed to a high pressure of up to 500 bar, the solubility of the gas increases in the liquid. As a result, the dissolved gas also diffuses into the microbial cells. When the pressure is finally abruptly decreased, the gas expands – even within the cells – and causes these to burst. The previously dissolved gas then goes back into the gas phase and is recovered for reuse.

"In studies at the Fraunhofer IGB and our partner institute ADERA we have shown that the colour of the wine is maintained over time during storage in barrels or bottles. In wine tastings, we found that the taste is not affected," says Vásquez-Caicedo. The new preservation method can be used in different stages of wine production: after vinification (wine pressing) of white wine, after the alcoholic fermentation, after the malolactic fermentation employed mainly in red wine for acid degradation as well as when racking and filling.

In the follow-up project "PreserveWine-DEMO" the process will be transferred as a winery process to industrial scale. To this end, the researchers want to build a mobile plant that can be tested on site in various wineries. In parallel, the consortium aims to ensure product quality and process feasibility and wants to examine consumer acceptance of the new technology.

The previous results have been achieved in the project "PreserveWine" (Grant Agreement No. 262507), which was funded from December 2010 to November 2012 in the European Union’s 7th Research Framework Programme. The follow-up project "PreserveWine-DEMO – Demonstration of a non-thermal process to replace use of sulphites and other chemical preservatives in European wines to meet new European Directive" (Grant Agreement No. 606569) has been funded in the EU’s 7th Research Framework Programme since January 2014. Project partners are the Fraunhofer IGB (Germany) and the Association pour le Développement de l'Enseignement et des Recherches auprès des Universités des Centres de Recherche et des Entreprises d'Aquitaine (France) as research partners, the companies Edecto (Germany), Statiflo (UK), Uvasol (UK) and Malthe Winje (Norway) as technology suppliers, the Société Civile Agricole du Château Guiraud (France) as a user as well as the winery association Comité de la Communauté économique Européenne Industries Commerce Vins (Belgium).

Weitere Informationen:

Dr. Claudia Vorbeck | Fraunhofer-Institut

Further reports about: PreserveWine-DEMO acid pressure spoilage temperatures wine winemaking process

More articles from Life Sciences:

nachricht High-arctic butterflies shrink with rising temperatures
07.10.2015 | Aarhus University

nachricht Long-term contraception in a single shot
07.10.2015 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

NASA provides an infrared look at Hurricane Joaquin over time

08.10.2015 | Earth Sciences

Theoretical computer science provides answers to data privacy problem

08.10.2015 | Information Technology

Stellar desk in wave-like motion

08.10.2015 | Physics and Astronomy

More VideoLinks >>>