Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Prepped’ by tumor cells, lymphatic cells encourage breast cancer cells to spread

03.09.2014

HIV drug plus blood vessel growth-blockers could halt metastasis

Breast cancer cells can lay the groundwork for their own spread throughout the body by coaxing cells within lymphatic vessels to send out tumor-welcoming signals, according to a new report by Johns Hopkins scientists.

Writing in the Sept. 2 issue of Nature Communications, the researchers describe animal and cell-culture experiments that show increased levels of so-called signaling molecules released by breast cancer cells. These molecules cause lymphatic endothelial cells (LECs) in the lungs and lymph nodes to produce proteins called CCL5 and VEGF. CCL5 attracts tumor cells to the lungs and lymph nodes, and VEGF increases the number of blood vessels and makes them more porous, allowing tumor cells to metastasize and infiltrate the lungs.

In the same report, the researchers say maraviroc, a drug already approved for treating HIV infection, blocked the siren call of CCL5 in tests on animals and cells and prevented tumor spread (metastasis). Additional experiments using a combination of maraviroc and a drug that blocks the VEGF protein suggest that the treatment duo could be an effective way to prevent metastatic disease in human breast cancer patients, according to the researchers.

... more about:
»Cancer »Medicine »VEGF »lungs »lymph »lymphatic »metastasis »metastatic

Because the anti-retroviral drug maraviroc has already been approved by the U.S. Food and Drug Administration and has been shown safe for long term, oral use, it could be tested in clinical trials sooner rather than later, says Aleksander Popel, Ph.D., a professor in the Department of Biomedical Engineering at the Johns Hopkins University School of Medicine and member of the Johns Hopkins Kimmel Cancer Center.

"It was surprising to find that LECs can play such an active and significant role in tumor spread." Popel noted. "Conventionally, lymphatic vessels are regarded mainly as passive conduits through which tumor cells spread from the primary tumor and eventually metastasize," he said. "However, we now know that lymphatic vessels enable metastasis, and other studies also show that they play an important role in whether or not immune cells recognize and attack cancer cells."

Popel and colleagues traced the influence of tumor signaling on LECs in cell cultures and in mice. Breast cancer cells were bathed in a nutrient-rich liquid, and, as the cancer cells grew, the investigators detected secretions of a signaling molecule called interleukin-6 (IL6) in the liquid.

Mice that were injected with the IL6-containing liquid experienced a continual rise in CCL5 levels in blood samples for several weeks. Nine of 10 tumor-bearing mice injected with the IL6-laden liquid developed metastases five weeks later. Only two of 10 mice, exposed to the liquid and given a combination of maraviroc and a VEGF-blocking drug, developed metastases.

Because maraviroc blocks the actions of CCL5, it could be delivered, along with standard chemotherapy, right after surgically removing a tumor in a bid to prevent any leftover circulating tumor cells from finding a new metastatic niche in the body, Popel says.

"However, IL6-secreting tumors could be laying the groundwork for metastasis much earlier than surgery occurs in a patient," he said. "To prevent metastatic sites from taking root, we could administer drugs that block IL6 before surgery."

The study did not address when or how to remove lymph node tissue surgically, as is often done as part of breast cancer treatment, but Popel and colleagues hope to explore the issue in future studies.

###

Other researchers on the paper include Esak Lee, the first author, and Niranjan Pandey of the Department of Biomedical Engineering, Johns Hopkins University School of Medicine and Elana Fertig, Kideok Jin, and Saraswati Sukumar of the Johns Hopkins Kimmel Cancer Center.

Funding for the study was provided by the National Institutes of Health's National Cancer Institute (R01 CA138264) and the Safeway Foundation for Breast Cancer.

Johns Hopkins Medicine (JHM), headquartered in Baltimore, Maryland, is a $7 billion integrated global health enterprise and one of the leading academic health care systems in the United States. JHM unites physicians and scientists of the Johns Hopkins University School of Medicine with the organizations, health professionals and facilities of The Johns Hopkins Hospital and Health System. JHM's vision, "Together, we will deliver the promise of medicine," is supported by its mission to improve the health of the community and the world by setting the standard of excellence in medical education, research and clinical care. Diverse and inclusive, JHM educates medical students, scientists, health care professionals and the public; conducts biomedical research; and provides patient-centered medicine to prevent, diagnose and treat human illness. JHM operates six academic and community hospitals, four suburban health care and surgery centers, and more than 35 Johns Hopkins Community Physicians sites. The Johns Hopkins Hospital, opened in 1889, has been ranked number one in the nation by U.S. News & World Report for 22 years of the survey's 25 year history, most recently in 2013. For more information about Johns Hopkins Medicine, its research, education and clinical programs, and for the latest health, science and research news, visit http://www.hopkinsmedicine.org

Media Contacts:

Vanessa Wasta, 410-614-2916, wasta@jhmi.edu

Amy Mone, 410-614-2915, amone@jhmi.edu

Vanessa Wasta | Eurek Alert!

Further reports about: Cancer Medicine VEGF lungs lymph lymphatic metastasis metastatic

More articles from Life Sciences:

nachricht Pathogenic bacteria hitchhiking to North and Baltic Seas?
22.07.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unconventional quasiparticles predicted in conventional crystals
22.07.2016 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

The Exception and its Rules

25.07.2016 | Physics and Astronomy

Using Ultrashort Pulsed Laser Radiation to Process Fibre-Reinforced Components

25.07.2016 | Materials Sciences

Added bacterial film makes new mortar resistant to water uptake

25.07.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>