Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting the fate of stem cells

23.10.2013
Technique has potential use in regenerative medicine and drug development

University of Toronto researchers have developed a method that can rapidly screen human stem cells and better control what they will turn into. The technology could have potential use in regenerative medicine and drug development. Findings are published in this week's issue of the journal Nature Methods.

"The work allows for a better understanding of how to turn stem cells into clinically useful cell types more efficiently," according to Emanuel Nazareth, a PhD student at the Institute of Biomaterials & Biomedical Engineering (IBBME) at the University of Toronto. The research comes out of the lab of Professor Peter Zandstra, Canada Research Chair in Bioengineering at U of T.

The researchers used human pluripotent stem cells (hPSC), cells which have the potential to differentiate and eventually become any type of cell in the body. But the key to getting stem cells to grow into specific types of cells, such as skin cells or heart tissue, is to grow them in the right environment in culture, and there have been challenges in getting those environments (which vary for different types of stem cells) just right, Nazareth said.

The researchers developed a high-throughput platform, which uses robotics and automation to test many compounds or drugs at once, with controllable environments to screen hPSCs in. With it, they can control the size of the stem cell colony, the density of cells, and other parameters in order to better study characteristics of the cells as they differentiate or turn into other cell types. Studies were done using stem cells in micro-environments optimized for screening and observing how they behaved when chemical changes were introduced.

It was found that two specific proteins within stem cells, Oct4 and Sox2, can be used to track the four major early cell fate types that stem cells can turn into, allowing four screens to be performed at once.

"One of the most frustrating challenges is that we have different research protocols for different cell types. But as it turns out, very often those protocols don't work across many different cell lines," Nazareth said.

The work also provides a way to study differences across cell lines that can be used to predict certain genetic information, such as abnormal chromosomes. What's more, these predictions can be done in a fraction of the time compared to other existing techniques, and for a substantially lower cost compared to other testing and screening methods.

"We anticipate this technology will underpin new strategies to identify cell fate control molecules, or even drugs, for a number of different stem cell types," Zandstra said.

As a drug screening technology "it's a dramatic improvement over its predecessors," said Nazareth. He notes that in some cases, the new technology can drop testing time from up to a month to a mere two days.

Professor Peter Zandstra was awarded the 2013 Till & McCulloch Award in recognition of this contribution to global stem cell research.

About IBBME:

The Institute of Biomaterials & Biomedical Engineering (IBBME) is an interdisciplinary unit allowing a remarkable degree of integration and collaboration across three Faculties at the University of Toronto: Applied Science & Engineering, Dentistry and Medicine. The Institute pursues research in four areas: neural, sensory systems and rehabilitation engineering; biomaterials, tissue engineering and regenerative medicine; molecular imaging and biomedical nanotechnology; and, medical devices and clinical technologies.

Erin Vollick | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>