Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

By trying it all, predatory sea slug learns what not to eat

07.06.2013
Researchers have found that a type of predatory sea slug that usually isn’t picky when it comes to what it eats has more complex cognitive abilities than previously thought, allowing it to learn the warning cues of dangerous prey and thereby avoid them in the future.

The research appears in the Journal of Experimental Biology.

Pleurobranchaea californica is a deep-water species of sea slug found off the west coast of the United States. It has a relatively simple neural circuitry and set of behaviors. It is a generalist feeder, meaning, as University of Illinois professor of molecular and integrative physiology and leader of the study Rhanor Gillette put it, that members of this species “seem to try anything once.”

Another sea slug species, Flabellina iodinea, commonly known as the Spanish shawl because of the orange outgrowths called cerata that cover its purple back, also lives off the west coast. Unlike Pleurobranchaea, however, the Spanish shawl eats only one type of food, an animal called Eudendrium ramosum. According to Gillette, the Spanish shawl digests the Eudendrium’s entire body except for its embryonic, developing stinging cells. The Spanish shawl instead transports these stinging cells to its own cerata where they mature, thereby co-opting its victim’s body parts for its own defense.

The story of Gillette’s Pleurobranchaea-Flabellina research began with a happy accident that involved showing a lab visitor Pleurobranchaea’s penchant for predation.

“I had a Pleurobranchaea in a small aquarium that we were about to do a physiological experiment with, and my supplier from Monterey had just sent me these beautiful Spanish shawls,” Gillette said. “So I said to the visitor, ‘Would you like to see Pleurobranchaea eat another animal?’”

Gillette placed the Spanish shawl into the aquarium. The Pleurobranchaea approached, smelled, and bit the purple and orange newcomer. However, the Flabellina’s cerata stung the Pleurobranchaea, the Spanish shawl was rejected and left to do its typical “flamenco dance of escape,” and Pleurobranchaea also managed to escape with an avoidance turn.

Some minutes later, his curiosity piqued, Gillette placed the Spanish shawl back into the aquarium with the Pleurobranchaea. Rather than try to eat the Spanish shawl a second time, the Pleurobranchaea immediately started its avoidance turn. (Watch a video of this interaction.)

“I had never seen that before! We began testing them and found that they were learning the odor of the Spanish shawl very specifically and selectively,” Gillette said.

Gillette and his team later replicated that day’s events by placing a Pleurobranchaea in a training arena 12-15 centimeters from a Spanish shawl, then recorded the Pleurobranchaea’s behavior. They returned the Pleurobranchaea to the arena for four more trials in 20-minute intervals, then repeated the procedure 24 and 72 hours later.

In the experiments, those Pleurobranchaea whose feeding thresholds were too high (meaning they were already full) or too low (they were extremely hungry) would either not participate or completely consume the Spanish shawl, respectively. Those that were hungry, but not ravenously so, continued to exhibit the avoidance-turn behavior when placed with the Spanish shawl even 72 hours later.

This showed that Pleurobranchaea was selective in its food choices, but only on a case-by-case basis; the sea slugs already trained to avoid the Spanish shawl would readily eat a species closely related to Flabellina called Hermissenda crassicornis.

Such behaviors come in handy in Pleurobranchaea’s natural environment, Gillette said.

“If you’re a generalist like Pleurobranchaea, it’s highly strategic and advantageous to learn what’s good and what’s not good so you can decide whether or not to take the risk or of attacking certain types of prey,” he said.

These findings show that the “simple” Pleurobranchaea is much more complex than originally thought.

“We already knew the neuronal circuitry that mediates this kind of decision,” Gillette said. “Finding this highly selective type of learning enlarges our perspective of function, in terms of the animal’s ability to make cost-benefit decisions that place it on a rather higher plane of cognitive ability than previously thought for many sea slugs.”

Chelsey B. Coombs | University of Illinois
Further information:
http://www.illinois.edu
http://news.illinois.edu/news/13/0606sea_slugs_RhanorGillette.html

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>