Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


By trying it all, predatory sea slug learns what not to eat

Researchers have found that a type of predatory sea slug that usually isn’t picky when it comes to what it eats has more complex cognitive abilities than previously thought, allowing it to learn the warning cues of dangerous prey and thereby avoid them in the future.

The research appears in the Journal of Experimental Biology.

Pleurobranchaea californica is a deep-water species of sea slug found off the west coast of the United States. It has a relatively simple neural circuitry and set of behaviors. It is a generalist feeder, meaning, as University of Illinois professor of molecular and integrative physiology and leader of the study Rhanor Gillette put it, that members of this species “seem to try anything once.”

Another sea slug species, Flabellina iodinea, commonly known as the Spanish shawl because of the orange outgrowths called cerata that cover its purple back, also lives off the west coast. Unlike Pleurobranchaea, however, the Spanish shawl eats only one type of food, an animal called Eudendrium ramosum. According to Gillette, the Spanish shawl digests the Eudendrium’s entire body except for its embryonic, developing stinging cells. The Spanish shawl instead transports these stinging cells to its own cerata where they mature, thereby co-opting its victim’s body parts for its own defense.

The story of Gillette’s Pleurobranchaea-Flabellina research began with a happy accident that involved showing a lab visitor Pleurobranchaea’s penchant for predation.

“I had a Pleurobranchaea in a small aquarium that we were about to do a physiological experiment with, and my supplier from Monterey had just sent me these beautiful Spanish shawls,” Gillette said. “So I said to the visitor, ‘Would you like to see Pleurobranchaea eat another animal?’”

Gillette placed the Spanish shawl into the aquarium. The Pleurobranchaea approached, smelled, and bit the purple and orange newcomer. However, the Flabellina’s cerata stung the Pleurobranchaea, the Spanish shawl was rejected and left to do its typical “flamenco dance of escape,” and Pleurobranchaea also managed to escape with an avoidance turn.

Some minutes later, his curiosity piqued, Gillette placed the Spanish shawl back into the aquarium with the Pleurobranchaea. Rather than try to eat the Spanish shawl a second time, the Pleurobranchaea immediately started its avoidance turn. (Watch a video of this interaction.)

“I had never seen that before! We began testing them and found that they were learning the odor of the Spanish shawl very specifically and selectively,” Gillette said.

Gillette and his team later replicated that day’s events by placing a Pleurobranchaea in a training arena 12-15 centimeters from a Spanish shawl, then recorded the Pleurobranchaea’s behavior. They returned the Pleurobranchaea to the arena for four more trials in 20-minute intervals, then repeated the procedure 24 and 72 hours later.

In the experiments, those Pleurobranchaea whose feeding thresholds were too high (meaning they were already full) or too low (they were extremely hungry) would either not participate or completely consume the Spanish shawl, respectively. Those that were hungry, but not ravenously so, continued to exhibit the avoidance-turn behavior when placed with the Spanish shawl even 72 hours later.

This showed that Pleurobranchaea was selective in its food choices, but only on a case-by-case basis; the sea slugs already trained to avoid the Spanish shawl would readily eat a species closely related to Flabellina called Hermissenda crassicornis.

Such behaviors come in handy in Pleurobranchaea’s natural environment, Gillette said.

“If you’re a generalist like Pleurobranchaea, it’s highly strategic and advantageous to learn what’s good and what’s not good so you can decide whether or not to take the risk or of attacking certain types of prey,” he said.

These findings show that the “simple” Pleurobranchaea is much more complex than originally thought.

“We already knew the neuronal circuitry that mediates this kind of decision,” Gillette said. “Finding this highly selective type of learning enlarges our perspective of function, in terms of the animal’s ability to make cost-benefit decisions that place it on a rather higher plane of cognitive ability than previously thought for many sea slugs.”

Chelsey B. Coombs | University of Illinois
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>