Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Predatory organisms at depth

Viruses within the ocean floor comprise the greatest fraction of the deep biosphere

In the current issue of the Journal of the International Society for Microbial Ecology (ISME Journal, 20.1.2014) scientists from the University of Oldenburg and from the GFZ German Centre for Geosciences show that in deep, old and nutrient-poor marine sediments there are up to 225 times more viruses than microbes.

In such extreme habitats viruses make up the largest fraction of living biomass and take over the role as predators in this bizarre ecosystem.

The scientists found that with decreasing nutrient levels the ratio between viruses and cells shifts more toward viruses.

“For several years it has been know that the biomass of all microbes within the sea floor equals that of all life in the oceans above” reports Jens Kallmeyer from the GFZ. “Viruses, however, have been neglected previously”.

In these extreme environments viruses take over the role of predatory organisms: They control size and composition of the microbial community. The surprisingly high number of viruses can be explained by the fact that the small but active microbial community permanently produces new viruses that remain in the sediment for longer times because the few microbes produce fewer enzymes that can destroy viruses.

Previous measurements in seawater and surficial sediments showed that viruses are about ten times more abundant than microbes, but because of their much smaller biomass they did not play a major role in estimates of the total living biomass. Moreover, it was assumed that predators such as unicellular organisms, but also worms and snails control the size of the microbial population. The new results show that these simple assumptions are no longer valid.

Engelhardt, T., Kallmeyer, J., Cypionka, H., & Engelen, B. (2014): „High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments”, ISME Journal. doi: 10.1038/ismej.2013.245; 20.01.2014

Franz Ossing | GFZ Potsdam
Further information:

More articles from Life Sciences:

nachricht Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes
07.10.2015 | Karl-Franzens-Universität Graz

nachricht Flipping molecular attachments amps up activity of CO2 catalyst
06.10.2015 | DOE/Brookhaven National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

IP-cores for real-time signal processing in digital communication systems

07.10.2015 | Information Technology

Research initiative presents new traffic technologies for cities

07.10.2015 | Transportation and Logistics

Kick-off for a new era of precision astronomy

07.10.2015 | Physics and Astronomy

More VideoLinks >>>