Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predatory organisms at depth

21.01.2014
Viruses within the ocean floor comprise the greatest fraction of the deep biosphere

In the current issue of the Journal of the International Society for Microbial Ecology (ISME Journal, 20.1.2014) scientists from the University of Oldenburg and from the GFZ German Centre for Geosciences show that in deep, old and nutrient-poor marine sediments there are up to 225 times more viruses than microbes.



In such extreme habitats viruses make up the largest fraction of living biomass and take over the role as predators in this bizarre ecosystem.

The scientists found that with decreasing nutrient levels the ratio between viruses and cells shifts more toward viruses.

“For several years it has been know that the biomass of all microbes within the sea floor equals that of all life in the oceans above” reports Jens Kallmeyer from the GFZ. “Viruses, however, have been neglected previously”.

In these extreme environments viruses take over the role of predatory organisms: They control size and composition of the microbial community. The surprisingly high number of viruses can be explained by the fact that the small but active microbial community permanently produces new viruses that remain in the sediment for longer times because the few microbes produce fewer enzymes that can destroy viruses.

Previous measurements in seawater and surficial sediments showed that viruses are about ten times more abundant than microbes, but because of their much smaller biomass they did not play a major role in estimates of the total living biomass. Moreover, it was assumed that predators such as unicellular organisms, but also worms and snails control the size of the microbial population. The new results show that these simple assumptions are no longer valid.

Engelhardt, T., Kallmeyer, J., Cypionka, H., & Engelen, B. (2014): „High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments”, ISME Journal. doi: 10.1038/ismej.2013.245; 20.01.2014

Franz Ossing | GFZ Potsdam
Further information:
http://www.gfz-potsdam.de/

More articles from Life Sciences:

nachricht The herbivore dilemma: How corn plants fights off simultaneous attacks
09.02.2016 | Boyce Thompson Institute for Plant Research

nachricht Shedding Light on Bacteria
09.02.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wbp2 is a novel deafness gene

Researchers at King’s College London and the Wellcome Trust Sanger Institute in the United Kingdom have for the first time demonstrated a direct link between the Wbp2 gene and progressive hearing loss. The scientists report that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse as well as in two clinical cases of children with deafness with no other obvious features. The results are published in EMBO Molecular Medicine.

The scientists have shown that hearing impairment is linked to hormonal signalling rather than to hair cell degeneration. Wbp2 is known as a transcriptional...

Im Focus: From allergens to anodes: Pollen derived battery electrodes

Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an...

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

Fossils Turn Out to Be a Rich Source of Information

09.02.2016 | Earth Sciences

Shedding Light on Bacteria

09.02.2016 | Life Sciences

Hunting pressure on forest animals in Africa is on the increase

09.02.2016 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>