Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predatory Bacterial Swarm Uses Rippling Motion to Reach Prey

31.10.2008
Like something from a horror movie, the swarm of bacteria ripples purposefully toward their prey, devours it and moves on.

Researchers at the University of Iowa are studying this behavior in Myxococcus xanthus (M. xanthus), a bacterium commonly found in soil, which preys on other bacteria.

Despite its deadly role in the bacterial world, M. xanthus is harmless to humans and might one day be used beneficially to destroy harmful bacteria on surfaces or in human infections, said John Kirby, Ph.D., associate professor of microbiology in the UI Roy J. and Lucille A. Carver College of Medicine.

"It may be that we can modify this predator-prey relationship or apply it to medically relevant situations," Kirby said. "It would be amazing if we could adapt its predatory ability to get rid of harmful bacteria that reside in places we don't want them, including in hospitals or on medical implants."

M. xanthus lives in a multi-cellular unit that can change its structure and behavior in response to changing availability of prey.

This adaptive ability to control movement in response to an environmental stimulus is called chemotaxis, and the research team coined the term predataxis to describe M. xanthus behavior in response to prey.

In earlier studies, Kirby and James Berleman, Ph.D., a postdoctoral fellow in Kirby's lab, showed that the presence of prey causes M. xanthus to form parallel rippling waves that move toward and through prey bacteria. Now, how the bacteria organize to form these traveling waves in response to the presence of prey is the subject of the UI team's latest study, which was published online Oct. 24 in Proceedings of the National Academy of Sciences (PNAS) Early Edition.

"When an M. xanthus aggregate is placed inside a colony of E. coli bacteria, the M. xanthus proceeds to eat the colony from the inside out and creates a rippling pattern as the swarm moves through the prey cells," Kirby said. "We now know that this rippling pattern is the highly organized behavior of thousands of cells working in concert to digest the prey."

Unlike the random motion M. xanthus exhibits at low levels of prey, the study shows that during predation, individual M. xanthus cells line up perpendicular to the axis of the ripple and move back and forth. This motion of individual cells, known as cell reversal produces an alternating pattern of high and low cell density like crests and troughs of waves, and the overall motion of the wave formation is directed toward prey.

The UI team also showed that the ripple wavelength is adaptable and dependent of how much prey is available. At high prey density, M. xanthus forms ripples with shorter wavelengths. As prey density decreases, the ripple wavelength gets longer. Eventually, when there is no more prey, the rippling behavior dissipates.

"The rippling appears to enhance predation by keeping more M. xanthus cells in the location of the prey cells," Kirby said.

Finally, the UI study found that the bacteria use a chemotaxis-like signaling pathway to regulate multi-cellular rippling during predation.

Individual M. xanthus cells move by shooting rope-like projections called pili from either end of the cell. These pili attach to surfaces allowing cells to pull themselves forward or backward in a "spiderman" type motion known as cell reversal. The genes that regulate this cell reversal process are chemotaxis-like genes.

The UI team mutated two genes in this pathway to study their effect on the predatory ability of the bacterium. One mutant strain rippled continuously even in the absence of prey, and individual cells exhibited a hyper-reversing action. Conversely, the second mutation produced bacteria that were not able to ripple at all.

Both mutants were unable to respond to changes in the amount of available prey and both mutant strains were deficient in predation.

"Our study really connects the stimulus to the behavioral response through this molecular machinery," Kirby said.

In addition the potential medical application of M. xanthus to destroy harmful bacteria, what Kirby learns about the molecular mechanisms used by the bacterium may also provide insights into the workings of a rarer, but potentially useful, bacterial cousin. The related bacterium, Anaeromyxobacter dehalogenans, has been found at superfund sites and it can transform soluble uranium, which can leach into the water supply, into insoluble uranium, which still is radioactive, but is stable and trapped in the soil where it can be more safely stored until the radioactivity decays.

In addition to Kirby and Berleman, the UI team included Jodie Scott and Tatiana Chumley.

The research was funded in part by the National Institutes of Health.

Jennifer Brown | Newswise Science News
Further information:
http://www.uiowa.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>