Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precision molecular assembly

08.02.2010
A finely tuned rare-earth metal catalyzes the exact interactions needed for site-selective molecular synthesis

Subtle electronic differences between metals in the periodic table can lead to radical changes in chemical reactivity. Now, a research team led by Zhaomin Hou from the RIKEN Advanced Science Institute, Wako, has found that scandium, a seldom-studied rare-earth metal, enables the catalytic addition of functional groups to unsaturated carbon bonds with better selectivity than other metals1—a boon to chemists seeking precise control over molecular assembly.

Hou and his team are experts in the field of rare-earth materials, and recently discovered that a so-called ‘half-sandwich’ complex, comprising a scandium cation and a pentagonal carbon ring, could efficiently catalyze production of long polymer chains.

“Our scandium complex acted as an excellent catalyst for olefin polymerization, with unprecedented activity and selectivity,” says Hou. Because the scandium complex targeted unsaturated carbon bonds during the polymerization process, the researchers realized its enormous potential in other important synthetic reactions, such as carbometalation.

During carbometalation, a metal catalyst helps an organic unit, such as a methyl group, and a metal—commonly aluminum—to add to a carbon–carbon double or triple bond. Researchers can then replace the metal with another molecular group, making carbometalation an effective way to construct carbon-based frameworks containing multiple, branched functional units.

What is difficult, though, is controlling the regioselectivity of the catalytic addition—the precise positions where the organic and metal units add to the unsaturated carbon bonds. When the team first attempted carbometalation with the scandium catalyst and a typical triple-bonded carbon molecule, it achieved only moderate regioselectivity, similar to other transition metal catalysts.

However, when the researchers tethered a silyl ether—a group containing silicon, oxygen, and hydrocarbon atoms—to the end of the triple-bonded carbon substrate, the carbometalation proceeded with extremely high regioselectivity; over 99% of the final product was isolated as a single chemical isomer. Further experiments revealed that the combination of a silyl ether tether group and a scandium-based catalyst enabled controllable carbometalation on numerous unsaturated organic molecules—in many cases, with higher regioselectivity than any other catalyst.

According to Hou, the unprecedented selectivity achievable through this method is due to a balanced interaction between the oxygen atom of the silyl ether adduct and the scandium cation. “This interaction should not be too strong,” he says, “otherwise coordination and insertion processes around unsaturated carbon–carbon triple and double bonds would be hampered.”

The researchers are currently exploring new ways to utilize rare-earth complexes for chemical transformations involving carbon and other elemental bonds.

The corresponding author for this highlight is based at the Organometallic Chemistry Laboratory, RIKEN Advanced Science Institute

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6175
http://www.researchsea.com

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential

16.01.2017 | Trade Fair News

Designing Architecture with Solar Building Envelopes

16.01.2017 | Architecture and Construction

Sensory Stimuli Control Dopamine in the Brain

13.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>