Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precision breeding needed to adapt corn to climate change, ancient samples show

04.08.2017

The US Corn Belt and European maize owe their existence to a historic change: the ability of this plant, originally from the tropics, to flower early enough to avoid winter. Research led by Cornell University in New York and the Max Planck Institute (MPI) for Developmental Biology in Tuebingen, Germany reveals that indigenous people in the American southwest started the process of adapting maize to temperate growing seasons 4000 years ago and refined it over the following 2000 years.

From this point onwards, it grew well enough to provide a reliable source of subsistence, mainly in stews and soups. Its nutritional content was also improved - the study finds that some of the archaeological samples had high beta-carotene yellow kernels, the earliest evidence of people eating yellow corn. The kernels were also likely to be of the popping variety.


Female flowering in one of the landrace hybrid

Credit: Kelly Swarts


Verena Schuenemann extracting ancient samples

Credit: Johannes Krause

Farmers adapted it using the genetic diversity of domesticated varieties and wild grass relatives already present in Mexico. Over time, their selections meant that varieties became dominant for gene variants that drive early flowering, enabling them to cope with a shorter growing season and different day-lengths. This took millennia to accomplish.

“We see incredible genetic variation in maize, but it took a long time to accumulate enough of the early flowering variants in the same plant to adapt to short growing seasons. A trait like flowering time is so complex that it involves changes to hundreds of genes,” says Kelly Swarts from Cornell University and now at the MPI for Developmental Biology.

The samples reveal that the first maize successfully adapted to grow in a temperate climate was short, bushy and was likely a pop-type corn compared to modern varieties, or landraces. The authors find that it helped lead to all temperate US and European maize grown today.

“Our findings show that because of its genetic diversity maize has the ability to adapt to just about anything that’s thrown at it” says Swarts. “But we won’t have the luxury of millennia to adapt maize to the environmental challenge of global warming and will need precision breeding, for example with genome-edited crops, to rapidly develop new varieties. Maintaining diversity in traditional maize landraces is also important. Precision breeding holds great promise, as long as we have a good understanding of what to target by studying the widest possible diversity.”

The scientists studied 15 maize samples extracted from fossilized maize cobs discovered in a dry cave shelter known as Turkey Pen in Utah’s Grand Gulch canyon."It was very exciting to carry out the first genetic analysis of the samples since their excavation in the 1970s,” says Hernán Burbano from the MPI for Developmental Biology. “The samples were very well-preserved in this dry environment. Although DNA fragments were short, in some samples up to 80% of the retrieved fragments were maize DNA with only a minor fraction of microbial origin. Consequently, it was possible to characterize genetic variation in each sample across the whole genome,” he says.

The authors gathered information from thousands of modern inbred maize varieties. To predict flowering in the long-dead archaeological samples, they compared the genomes of ancient and modern strains. To test whether their predictions were accurate, they developed populations from descendants of the ancient varieties and grew them to observe when they flowered.

The validation showed that the initial predictions were highly accurate. Future studies of archaeobotanical crop samples could now use the same methods. “It wasn’t thought possible to pinpoint a trait like flowering time from archaeological samples and it’s only because of recent advances in both ancient and modern genomics that we’ve been able to generate these new insights,” says Swarts.

The study was funded by the National Science Foundation in the US and the Max Planck Society in Germany. It will be published on Friday 4th August in Science.

Weitere Informationen:

http://science.sciencemag.org/cgi/doi/10.1126/science.aam9425

Sarah Hailer | Max-Planck-Institut für Entwicklungsbiologie
Further information:
http://www.fml.mpg.de

Further reports about: Biology Entwicklungsbiologie MPI Max-Planck-Institut genetic variation maize

More articles from Life Sciences:

nachricht Nanoparticles help with malaria diagnosis – new rapid test in development
21.11.2017 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Sleep as energy saving mode
21.11.2017 | Universitätsspital Bern

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>