Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Precise Molecular Surgery in the Plant Genome

New Gene Targeting Method Uses Natural Repair Mechanism of Plants/ Gene Manipulation Efficiency Is Increased by Two Orders of Magnitude

Crop plants have always been adapted to the needs of man by breeding for them to carry more fruit, survive droughts, or resist pests. Green biotechnology now adds new tools to the classical breeding methods for a more rapid and efficient improvement of plant properties.

Thale cress blossom: Common thale cress (Arabidopsis thaliana) is used as a model plant in many biotechnology experiments. (Photo: H. Puchta/ KIT)

A biotechnological technique developed by KIT botanists to more precisely and reliably install or modify genetic information in the plant genome is now presented by the expert journal PNAS. (DOI: 10.1073/pnas.1202191109).

The new method is based on the natural repair mechanism of plants. So-called homologous recombination repairs the genome when the genome strands in the cell break. “Using an appropriate enzyme, i.e. molecular scissors, we first make a cut at the right point in the genome and then supply the necessary patch to repair this cut,” says Friedrich Fauser from Karlsruhe Institute of Technology, who is the first author of the PNAS publication. “A part of this patch is the new gene piece we want to install. The rest is done by the repair service of the cell.”

Due to this trick, the method that is referred to as “in planta gene targeting” (IPGT) is highly reliable and the new genetic information is incorporated in the genome precisely at the point desired. In principle, IPGT may be applied to every plant. “This is a big advantage compared to conventional methods that work for certain plants only and produce a lot of rejects,” explains Professor Holger Puchta, who holds the Chair for Molecular Biology and Biochemistry of Plants at Karlsruhe Institute of Technology. “Thanks to appropriate molecular scissors and patches and the natural repair mechanism of the cell, IPGT is about 100 times more efficient than techniques used so far.”

With their experiments on the model plant of thale cress (Arabidopsis thaliana), the researchers of KIT, in cooperation with the company SunGene GmbH, a subsidiary of BASF Plant Science having its office at Gatersleben, have now succeeded in furnishing evidence of the fact that IPGT works in plants. “The next step towards broader application in biotechnolgoy will be the transfer of the principle to other plants and the development of appropriate scissors and patches,” says Puchta. In this way, the favorable properties of wild species can be transferred rapidly to crop plants. The long-term objective is the optimum use of natural resources for the production of food and vegetable raw materials.
The paper in the portal of the journal PNAS:

The homepage of the working group of Professor Puchta.

Karlsruhe Institute of Technology (KIT) is a public corporation according to the legislation of the state of Baden-Württemberg. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. KIT focuses on a knowledge triangle that links the tasks of research, teaching, and innovation.

For further information, please contact:

Margarete Lehné
Presse, Kommunikation und Marketing
Phone: +49 721 608-48121
Fax: +49 721 608-45681
margarete lehne∂kit edu

Monika Landgraf | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>