Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precise Molecular Surgery in the Plant Genome

25.04.2012
New Gene Targeting Method Uses Natural Repair Mechanism of Plants/ Gene Manipulation Efficiency Is Increased by Two Orders of Magnitude

Crop plants have always been adapted to the needs of man by breeding for them to carry more fruit, survive droughts, or resist pests. Green biotechnology now adds new tools to the classical breeding methods for a more rapid and efficient improvement of plant properties.


Thale cress blossom: Common thale cress (Arabidopsis thaliana) is used as a model plant in many biotechnology experiments. (Photo: H. Puchta/ KIT)

A biotechnological technique developed by KIT botanists to more precisely and reliably install or modify genetic information in the plant genome is now presented by the expert journal PNAS. (DOI: 10.1073/pnas.1202191109).

The new method is based on the natural repair mechanism of plants. So-called homologous recombination repairs the genome when the genome strands in the cell break. “Using an appropriate enzyme, i.e. molecular scissors, we first make a cut at the right point in the genome and then supply the necessary patch to repair this cut,” says Friedrich Fauser from Karlsruhe Institute of Technology, who is the first author of the PNAS publication. “A part of this patch is the new gene piece we want to install. The rest is done by the repair service of the cell.”

Due to this trick, the method that is referred to as “in planta gene targeting” (IPGT) is highly reliable and the new genetic information is incorporated in the genome precisely at the point desired. In principle, IPGT may be applied to every plant. “This is a big advantage compared to conventional methods that work for certain plants only and produce a lot of rejects,” explains Professor Holger Puchta, who holds the Chair for Molecular Biology and Biochemistry of Plants at Karlsruhe Institute of Technology. “Thanks to appropriate molecular scissors and patches and the natural repair mechanism of the cell, IPGT is about 100 times more efficient than techniques used so far.”

With their experiments on the model plant of thale cress (Arabidopsis thaliana), the researchers of KIT, in cooperation with the company SunGene GmbH, a subsidiary of BASF Plant Science having its office at Gatersleben, have now succeeded in furnishing evidence of the fact that IPGT works in plants. “The next step towards broader application in biotechnolgoy will be the transfer of the principle to other plants and the development of appropriate scissors and patches,” says Puchta. In this way, the favorable properties of wild species can be transferred rapidly to crop plants. The long-term objective is the optimum use of natural resources for the production of food and vegetable raw materials.
The paper in the portal of the journal PNAS:
http://www.pnas.org/

The homepage of the working group of Professor Puchta.
http://www.botanik2.uni-karlsruhe.de/591.php


Karlsruhe Institute of Technology (KIT) is a public corporation according to the legislation of the state of Baden-Württemberg. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. KIT focuses on a knowledge triangle that links the tasks of research, teaching, and innovation.

For further information, please contact:

Margarete Lehné
Presse, Kommunikation und Marketing
Phone: +49 721 608-48121
Fax: +49 721 608-45681
margarete lehne∂kit edu

Monika Landgraf | EurekAlert!
Further information:
http://www.kit.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>