Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Practice as well as sleep may help birds learn new songs

15.12.2008
Research looks at brain in the first moments of learning

The reorganization of neural activity during sleep helps young songbirds to develop the vocal skills they display while awake, University of Chicago researchers have found.

Sleep is well known to have a role in a broad range of learning processes studied in humans, including acquiring complex skills such as video game playing and learning new speech dialects. However, the neural mechanisms involved in the nighttime consolidation of learning are not well understood. To study this, researchers turned to an animal model system, the developmental learning of song in songbirds, which long has been known to share features with learning speech and language.

Sylvan Shank, a recent Ph.D. graduate in Psychology, and Daniel Margoliash, Professor in Organismal Biology & Anatomy and in Psychology, report in this week's issue of Nature that when young zebra finches listen to an adult tutor's song and then practice singing, the activity of premotor neurons in the brain is altered during the following night's sleep. The newly formed pattern of spikes in nighttime activity carries information both about the tutor song and auditory feedback the birds hear while singing. These nighttime changes lead to improvements the young birds' singing that can be observed the following day.

The study, described in the paper, "Sleep and Sensorimotor Integration During Early Vocal Learning in a Songbird," is the first direct observation of the nighttime activity related to vocal learning.

"This study takes big steps forward in finding out how sleep impacts learning," Margoliash said. "We looked at juvenile birds at the first moments of learning. We gained insight into the role of auditory information in structuring sleep activity, which in turn, we speculate interacts with daytime activity to drive vocal learning.

Since the changes occur in the region of the brain that drives singing during the day, but occur prior to the changes in singing, this discovery provides a compelling hypothesis for how this learning might happen. Juvenile songbirds show a complex, sleep-dependent circadian patterns of singing that have been observed during developmental vocal learning.

Their songs have less structure each morning and regain their complexity each afternoon. This daily pattern of variation is important for song learning—birds that have the greatest variation early in development are the ones that ultimately learn the best.

"We now have a new model for how this works," said Margoliash. "At night, the auditory information that the bird was exposed to during the day is reactivated, [carried by the spontaneous activity of neurons], changing the structure of the neural networks. These changes interact with changes during the day as birds listen to tutor songs and practice singing." The authors suggest that reactivation of sensory information at night might be a general mechanism for learning a new skill.

In previous work, Margoliash and his team identified places in the brain where nighttime activity is reactivated. In adult birds, individual cells spontaneously emitted patterns of bursts during sleep that were very similar to the burst patterns emitted when the bird sang during the day.

In the current study, the University team was able, for the first time, to look at juvenile zebra finches. Using microelectrodes, the team observed changes in neuronal activity during sleep in a region of the young zebra finch brain involved in singing—the acropalium (RA).

Shank and Margoliash first looked at the effects of exposing birds to different tutor songs. They then extended that work to the role of auditory feedback in driving learning. They wanted to see whether changes in the brain brought on during sleep after exposure to a new song were reinforced by practice as well as daytime listening. They theorized that the interaction of the listening followed by practice and sleep consolidation could explain how birds learn to sing new calls.

To test the role of auditory feedback on the bird's learning, the team used white noise at 100 decibels to prevent the birds from hearing themselves. In subsequent tests of their brain activity, the team found no increase in the activity after the exposure to white noise, even if the birds had listened to tutor songs. This finding demonstrated the importance of auditory feedback; after the white noise was eliminated, the birds began to learn normally.

"There is a very famous theory called the 'template theory' of birdsong learning," Margoliash said. "This theory postulates that a sensory template is formed when listening to an adult tutor, and that this template is then used to evaluate auditory feedback. We knew neither the form nor the mode of action of the template. Now we understand that the template can influence learning via sleep, and that new template information is rapidly distributed throughout the brain."

Neurons in RA do not exhibit auditory activity during the day, yet their nighttime activity patterns reflect auditory signals. Margoliash speculates that "perhaps dreams are so compelling because additional areas are recruited to process the sensory experience."

William Harms | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections

25.09.2017 | Life Sciences

NASA'S OSIRIS-REx spacecraft slingshots past Earth

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>