Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful sequencing technology decodes DNA folding pattern

12.04.2012
Findings provide tools for better understanding of the human genome

hromosomes are strands of DNA that contain the blueprint of all living organisms. Humans have 23 pairs of chromosomes that instruct how genes are regulated during development of the human body. While scientists have developed an understanding of the one-dimensional structure of DNA, until today, little was known about how different parts of DNA are folded next to each other inside the nucleus.

Using a powerful DNA sequencing methodology, researchers at the Ludwig Institute for Cancer Research have now investigated the three-dimensional structure of DNA folds in the nucleus of a chromosome. The findings published in the April 11 issue of Nature provide scientists with a greater understanding about the basic principles of DNA folding and its role in gene regulation.

"In any biology textbook, when you look at a diagram of how genes are depicted, it is invariably a one-dimensional line. In reality, genes are arranged in such a way that two parts of the gene may be distal to each other linearly, but very close in 3-D," said Dr. Bing Ren, Member of the Ludwig Institute for Cancer Research and Professor of Cellular and Molecular Medicine at the University of California, San Diego. "With the knowledge of how DNA folds inside the nucleus, we now have a more complete picture of the regulatory process of genes. That is the primary reason we sought to tackle this problem." The spatial organization is intimately linked to its role in the body.

Ludwig researchers used a sequencing-based method called Hi-C to examine the 3-D structure of chromosomes. "With this technology, we were able to build a map of pair-wise interactions from each chromosome, and from that, extrapolate the basic folding pattern of the DNA. What we learned is that they fold into many local domains termed topological domains, which are on average one million base pairs in size. By way of comparison, the whole human genome is just over three billion base pairs in size," explained lead researcher, Jesse Dixon, a graduate student in Dr. Ren's lab.

In examining the interaction map, Dr. Ren's team discovered that topological domains are the basic unit of folding. The team confirmed their findings by comparing it among different cell types. In each type, the folding of DNA into topological domains was constant.

A parallel study by researchers at Institut Curie and the University of Massachusetts Medical School support Ludwig researchers' findings. By focusing on the mouse X chromosome segment in embryonic stem cells, as well as neuronal cells and fibroblasts, researchers showed that this segment adhered to similar folding patterns as the ones found by Ren's team. They further showed that this organization could be linked to gene regulation.

"This is just the beginning of a very exciting area of research focused on the understanding of nuclear processes from a three-dimensional point of view. We know that some cancers, including many leukemias, are caused by the translocation of two genes. It's not clear how these translocations are regulated or whether they result from random events. It's possible that the spatial structure of the chromosome can provide clues about how these translocations occur and, more importantly, how we can prevent them or at least mitigate their effect," concluded Dr. Ren.

Co-authors on the paper include Siddarth Selvaraj of the Ludwig Institute for Cancer Research and the University of California, San Diego; Feng Yue, Audrey Kim, Yan Li and Yin Shen of the Ludwig Institute for Cancer Research; and Ming Hu and Jun S. Liu of Harvard University. Development of the new Hi-C technique used in the study was pioneered by a team of researchers including Job Dekker, professor and co-director of the Program in Systems Biology at the University of Massachusetts Medical School.

This work was supported by funding from the Ludwig Institute for Cancer Research, the California Institute for Regenerative Medicine, the National Institutes of Health and the Rett Syndrome Research Foundation.

About The Ludwig Institute for Cancer Research

LICR is an international non-profit organization committed to improving the understanding and control of cancer through integrated laboratory and clinical discovery. Leveraging its worldwide network of investigators and the ability to sponsor and conduct its own clinical trials, the Institute is actively engaged in translating its discoveries into applications for patient benefit. Since its establishment in 1971, the Institute has expended more than $1.5 billion on cancer research.

For further information please contact Rachel Steinhardt, rsteinhardt@licr.org or +1-212-450-1582

Rachel Steinhardt | EurekAlert!
Further information:
http://www.licr.org

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>