Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful New Tool Combs Family Genomes to Identify Disease-Causing Variations

30.05.2014

Scientists at the University of Utah (U of U), the University of Texas MD Anderson Cancer Center in Houston and colleagues have developed a powerful tool called pVAAST that combines linkage analysis with case control association to help researchers and clinicians identify disease-causing mutations in families faster and more precisely than ever before.

In a study in Nature Biotechnology, the researchersdescribe cases in which pVAAST (the pedigree Variant Annotation, Analysis and Search Tool) identified mutations in two families with separate diseases and a de novo or new variation in a 12-year-old who was the only one in his family to suffer from a mysterious and life threatening intestinal problem.


Mark Yandell, Ph.D.

“Linkage analysis and case control association traditionally have been used to find gene mutations,” says Chad Huff, Ph.D., corresponding author on the study, assistant professor of epidemiology at the MD Anderson Cancer Center and former postdoctoral fellow in human genetics at the U of U. “Bringing those methods together provides a strong increase in the power to find gene variations that cause disease.”

The advent of genome sequencing has allowed researchers to search for disease-causing mutations in the genomes of individual patients, larger groups of unrelated people or small and large families. The researchers in this study believe the most powerful way to identify these variants is by sequencing the genomes of families that experience unusually high occurrences of a particular illness. By identifying gene variations that family members share, it’s possible to identify mutations in a gene that causes the disease, according to Mark Yandell, Ph.D., U of U professor of human genetics and a senior author on the paper.

“The issue with whole genome sequences has been that sequencing one person’s genome to find a single disease-causing gene is difficult,” Yandell says. “If you can sequence the whole family it gives a fuller picture of the sequence and variations potentially involved in disease.”

Humans carry two healthy copies of each gene in the body. But mutations in a gene can cause disease or other health problems.  These mutations occur randomly and rarely, but once they happen in a family member, they are often passed down to subsequent generations.

pVAAST was designed to search the sequenced genomes of families to find shared mutations and thus identify the gene with the highest probability of causing disease. Unlike other gene-finding tools, pVAAST accounts for people being related as it searches for gene variations that have the highest probabilities of causing disease. A big advantage of pVAAST, according to Huff and Yandell, is its ability to simultaneously search multiple families with the same disease to find mutations; this reduces the amount of time and effort to find a disease-causing variant. For example, if three families have the same disease, two might have different mutations damaging the same gene, while the third family might have a different damaged gene. “pVAAST has the power to determine the true disease-causing mutations across all those families in one analysis,” Yandell says.

In related work, Yandell, Huff, and their colleagues vastly improved the results of individual and small family sequencing by developing another gene-finding tool, Phevor (Phenotype Driven Variant Ontological Re-ranking tool), which combines the probabilities of mutations being involved with a disease with databases of phenotypes and information on gene functions. In doing this Phevor and pVAAST in combination can identify disease genes with much greater precision than other tools.

Sequencing genomes of unrelated patients with the same disease also increases the ability to find gene variations, and a third software tool Yandell and colleagues developed, VAAST (Variant Annotation, Analysis and Search Tool), has greatly advanced the speed and precision of doing that.

If VAAST or pVAAST can’t identify the mutation most likely to cause a disease, Phevor can take the results from those tools and combine them with a description of the patients’ disease called a ‘phenotype’ to find the most likely causative gene.

“We hope that in developing pVAAST, we and other researchers can more rapidly identify genetic variations influencing disease risk by increasing the statistical power of familial genome sequencing,” Huff says.

This study is a collaboration of several institutions in the United States and one in Europe. Lynn B. Jorde, Ph.D., U of U professor and chair of human genetics and Martin Reese, Ph.D., CEO of Oakland, Calif.-based Omicia Inc., are senior authors. Leroy Hood, M.D., Ph.D., of the Institute for Systems Biology in Seattle, is a co-author as is Stephen L. Guthery, M.D., U of U professor of pediatrics who referred a patient and his family for the study, and Hilary Coon, Ph.D., research professor of psychiatry at the University of Utah School of Medicine.

Media Contacts
Phil Sahm
Office of Public Affairs

Phone: (801) 581-2517
Email: phil.sahm@hsc.utah.edu

Phil Sahm | Eurek Alert!
Further information:
http://healthcare.utah.edu/publicaffairs/news/current/YandellpVAAST52914.php

Further reports about: Disease-Causing ability genomes mutations variations

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>