Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-powered, Blood-activated Sensor Detects Pancreatitis Quickly and Cheaply

26.04.2011
A new low cost test for acute pancreatitis that gets results much faster than existing tests has been developed by scientists at The University of Texas at Austin.

The sensor, which could be produced for as little as a dollar, is built with a 12-cent LED light, aluminum foil, gelatin, milk protein and a few other cheap, easily obtainable materials.

The sensor could help prevent damage from acute pancreatitis, which is a sudden inflammation of the pancreas that can lead to severe stomach pain, nausea, fever, shock and in some cases, death.

“We’ve turned Reynold’s Wrap, JELL-O and milk into a way to look for organ failure,” says Brian Zaccheo, a graduate student in the lab of Richard Crooks, professor of chemistry and biochemistry.

The sensor, which is about the size of a matchbox, relies on a simple two-step process to diagnose the disease.

In step one, a bit of blood extract is dropped onto a layer of gelatin and milk protein. If there are high levels of trypsin, an enzyme that is overabundant in the blood of patients with acute pancreatitis, the trypsin will break down the gelatin in much the same way it breaks down proteins in the stomach.

In step two, a drop of sodium hydroxide (lye) is added. If the trypsin levels were high enough to break down that first barrier, the sodium hydroxide can trickle down to the second barrier, a strip of Reynold’s wrap, and go to work dissolving it.

The foil corrodes, and with both barriers now permeable, a circuit is able to form between a magnesium anode and an iron salt at the cathode. Enough current is generated to light up a red LED. If the LED lights up within an hour, acute pancreatitis is diagnosed.

“In essence, the device is a battery having a trypsin-selective switch that closes the circuit between the anode and cathode,” write Zaccheo and Crooks in a paper recently published in Analytical Chemistry.

Zaccheo and Crooks, who have a provisional patent, can envision a number of potential uses for the sensor. It might help providers in the developing world who don’t have the resources to do the more complex tests for pancreatitis. It could be of use in situations where batteries are in short supply, such as after a natural disaster or in remote locations. And because of the speed of the sensor, it could be an excellent first-line measure even in well-stocked hospitals.

For Zaccheo, the most appealing aspect of the project isn’t so much the specific sensor. It is the idea we might be able to save time, money and even lives by adopting this kind of low-tech approach.

“I want to develop biosensors that are easy to use but give a high level of sensitivity,” he says. “All you need for this, for instance, is to know how to use a dropper and a timer.”

Brian Zaccheo | EurekAlert!
Further information:
http://www.utexas.edu

Further reports about: Blood-activated Cheaply Crooks LED Self-powered Sensor Zaccheo pancreatitis

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>