Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Power Grid Buffer?

06.06.2011
New production process for NiO/Ni nanocomposite electrodes for supercapacitors
Angewandte Chemie celebrates the 50th anniversary of its International Edition with symposia in Tokyo and Beijing on June 20 and 22. Several Nobel laureates participate in the events, which will be transmitted over the internet. Learn more and join the excitement at angewandte.org/symposium.

Conversion to renewable energy sources like wind and sun is only a question of time. Because wind and solar radiation vary in strength, the increase in renewable energy sources will cause significant fluctuations in the power grid. These must be absorbed by energy storage systems. This need could be fulfilled by a device known as a supercapacitor. John Q. Xiao and his team at the University of Delaware (Newark, USA) have now developed a new process for the production of electrodes made of nickel oxide/nickel nanocomposites for electrochemical supercapacitors. As the researchers report in the journal Angewandte Chemie, their process is simple and cost-effective, and could be scaled up for industry.

Supercapacitors combine the advantages of conventional capacitors and batteries: Like a capacitor, they can rapidly deliver high current densities on demand; like a battery, they can store a large amount of electrical energy. Supercapacitors consist of electrochemical double-layers on electrodes when they are wetted with an electrolyte. When a voltage is applied, ions of opposite polarity collect at both electrodes, forming whisper-thin zones of immobile charge carriers.

The problem is that most processes for the production of the required nanostructured electrodes are either too sensitive to work at an industrial scale or require the addition of substances that later interfere with the electrodes’ function. Sometimes the electrical resistance of the materials is too high. Xiao’s team has now developed a new process for the production of electrodes from a nickel oxide/nickel nanocomposite that can overcome these obstacles.

The scientists first produce nickel nanoparticles. High-boiling polyalcohols, known as polyols, serve as the reaction medium. These cover the growth surfaces of the seed crystals, forming small spherical particles. The nanoparticles are then pressed together into pellets and deposited onto one side of a very thin platinum sheet, which later acts as the current collector. Annealing at 250 °C forms a layer of nickel oxide (NiO) around the pellet, which is the actual active layer of the supercapacitor. This results in compact, stable, highly porous Ni/NiO electrodes that do not require a support. Potassium hydroxide serves as the electrolyte.

During the charging process, OH– ions are bound to the NiO, giving off electrons. The process is reversed when the stored electrical energy is drawn off as current. Its high granularity gives the material a large inner surface area, providing good diffusion pathways for the ions. At the same time, the conductive network of the metal particles is maintained, which is important for high electrical conductivity. These characteristics are the reason for the surprisingly high capacity of the electrodes as well as their high power density and current density during the charge/discharge cycles.

Author: John Q. Xiao, University of Delaware, Newark (USA), http://www.physics.udel.edu/~jqx/
Title: Supercapacitor Electrodes with High-Energy and Power Densities Prepared from Monolithic NiO/Ni Nanocomposites

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201101083

John Q. Xiao | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.physics.udel.edu/~jqx/
http://dx.doi.org/10.1002/anie.201101083

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>