Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Power Grid Buffer?

06.06.2011
New production process for NiO/Ni nanocomposite electrodes for supercapacitors
Angewandte Chemie celebrates the 50th anniversary of its International Edition with symposia in Tokyo and Beijing on June 20 and 22. Several Nobel laureates participate in the events, which will be transmitted over the internet. Learn more and join the excitement at angewandte.org/symposium.

Conversion to renewable energy sources like wind and sun is only a question of time. Because wind and solar radiation vary in strength, the increase in renewable energy sources will cause significant fluctuations in the power grid. These must be absorbed by energy storage systems. This need could be fulfilled by a device known as a supercapacitor. John Q. Xiao and his team at the University of Delaware (Newark, USA) have now developed a new process for the production of electrodes made of nickel oxide/nickel nanocomposites for electrochemical supercapacitors. As the researchers report in the journal Angewandte Chemie, their process is simple and cost-effective, and could be scaled up for industry.

Supercapacitors combine the advantages of conventional capacitors and batteries: Like a capacitor, they can rapidly deliver high current densities on demand; like a battery, they can store a large amount of electrical energy. Supercapacitors consist of electrochemical double-layers on electrodes when they are wetted with an electrolyte. When a voltage is applied, ions of opposite polarity collect at both electrodes, forming whisper-thin zones of immobile charge carriers.

The problem is that most processes for the production of the required nanostructured electrodes are either too sensitive to work at an industrial scale or require the addition of substances that later interfere with the electrodes’ function. Sometimes the electrical resistance of the materials is too high. Xiao’s team has now developed a new process for the production of electrodes from a nickel oxide/nickel nanocomposite that can overcome these obstacles.

The scientists first produce nickel nanoparticles. High-boiling polyalcohols, known as polyols, serve as the reaction medium. These cover the growth surfaces of the seed crystals, forming small spherical particles. The nanoparticles are then pressed together into pellets and deposited onto one side of a very thin platinum sheet, which later acts as the current collector. Annealing at 250 °C forms a layer of nickel oxide (NiO) around the pellet, which is the actual active layer of the supercapacitor. This results in compact, stable, highly porous Ni/NiO electrodes that do not require a support. Potassium hydroxide serves as the electrolyte.

During the charging process, OH– ions are bound to the NiO, giving off electrons. The process is reversed when the stored electrical energy is drawn off as current. Its high granularity gives the material a large inner surface area, providing good diffusion pathways for the ions. At the same time, the conductive network of the metal particles is maintained, which is important for high electrical conductivity. These characteristics are the reason for the surprisingly high capacity of the electrodes as well as their high power density and current density during the charge/discharge cycles.

Author: John Q. Xiao, University of Delaware, Newark (USA), http://www.physics.udel.edu/~jqx/
Title: Supercapacitor Electrodes with High-Energy and Power Densities Prepared from Monolithic NiO/Ni Nanocomposites

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201101083

John Q. Xiao | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.physics.udel.edu/~jqx/
http://dx.doi.org/10.1002/anie.201101083

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>