Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential treatment target identified in an animal model of pancreatic cancer

02.07.2012
Analyzing circulating tumor cells reveals signaling pathway that may be essential to spread of deadly tumor

Detailed analysis of genes expressed in circulating tumor cells (CTCs) -- cells that break off from solid tumors and travel through the bloodstream -- has identified a potential treatment target in metastatic pancreatic cancer.

In a report that will appear in Nature and has received advance online publication, Massachusetts General Hospital (MGH) Cancer Center investigators describe finding increased expression of WNT2, a member of a known family of oncogenes, in CTCs from a mouse model of the deadly tumor and from human patients.

The researchers were able to capture the CTCs -– present in the bloodstream at extremely low levels –- using a microchip-based device previously developed by members of the team.

"This proof of principle study is the first to show that, by studying both mouse and human pancreatic cancer cells captured with this device, we can dissect genes that are overexpressed in these cells and identify signaling pathways that allow them to survive in the bloodstream," says Daniel Haber, MD, PhD, director of the MGH Cancer Center and senior author of the Nature paper. "We also found that targeting a key step in these pathways can reduce metastatic potential, which is critically important for control of pancreatic cancer. This study would not have been possible without a way to isolate rare CTCs from both mouse models and human patients."

Using the second-generation version of the CTC-chip, developed in collaboration with the MGH Center for Engineering in Medicine, the researchers first captured CTCs from mice genetically programmed to develop pancreatic cancer, one of the most deadly tumors since it is rarely diagnosed before spreading. Analysis of RNA expression levels in pancreatic CTCs, in primary tumor cells, and in normal pancreatic tissue identified several genes with significantly increased expression in the CTCs. One of these, WNT2, belongs to a family of developmental genes often overexpressed in cancer, and while the gene's expression in pancreatic tumors was higher than in normal tissue, WNT2 expression was significantly more elevated in both CTCs and metastatic cells.

Closer analysis of cells from several individual animals confirmed that WNT2 was highly expressed in pancreatic cancer CTCs and in metastases, but WNT2-expressing cells were found to be rare in primary tumors. Testing the consequences of WNT2 expression indicated that cancer cells expressing the gene were more likely to generate metastases, probably because of an improved ability to survive after dislodging from the primary tumor and entering the bloodstream.

The researchers tested several agents known to inhibit the activity of molecules in the WNT2 pathway their results implied was associated with pancreatic cancer and found that inhibition of TGF-beta activated kinase 1 (TAK1) prevented metastasis-associated activities in cultured CTCs. Knocking down TAK1 expression with RNA interference also reduced the development of metastasis in mice injected with WNT2-expressing CTCs. A significant percentage of tested CTCs from patients with metastatic pancreatic cancer were found to express WNT-related genes, along with other components of the signaling pathway associated with pancreatic cancer in the mouse model.

"The picture in more complicated in humans, since multiple WNTs are upregulated," Haber says. "But the TAK1 inhibitor we tested appears to have an effect on diverse WNT pathways involved in the survival of pancreatic CTCs. We previously reported that TAK1 inhibition has promise for treating a genetically defined subset of colon cancers, and these findings now extend the relevance of the TAK1 pathway to suppression of blood-borne metastasis in pancreatic cancer. Considerable more work will be needed to fully understand the critical pathways involved, but it is our hope that TAK1 inhibitors will ultimately be developed for clinical testing."

Haber is the Kurt Isselbacher/Peter Schwartz Professor of Oncology at Harvard Medical School and a Howard Hughes Medical Institute investigator. Co-lead authors of the Nature report are Min Yu, PhD, and David Ting, MD, PhD, MGH Cancer Center. Additional co-authors include Shyamala Maheswaran, PhD, Ben Wittner, PhD, Sridhar Ramaswamy, MD, Nabeel Bardeesy, PhD, and Lecia Sequist, MD, MGH Cancer Center; and Shannon Stott, PhD, and Mehmet Toner, PhD, MGH Center for Engineering in Medicine. The study was supported by grants from Stand Up to Cancer, the Howard Hughes Medical Institute, the National Institute of Biomedical Imaging and Bioengineering, the National Institutes of Health, the Pancreatic Cancer Action Network and the Warshaw Institute for Pancreatic Cancer Research.

Massachusetts General Hospital (www.massgeneral.org), founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $750 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>