Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New potential therapeutic target discovered for genetic disorder -- Barth syndrome

04.03.2009
Researchers at NYU Langone Medical Center may have discovered a new targeted intervention for Barth Syndrome (BTHS). BTHS, a sometimes fatal disease, is a serious genetic disorder occurring predominantly in males that leads to infection or heart failure in childhood.

The new study entitled, "Role of calcium-independent phospholipase A2 in the pathogenesis of Barth syndrome", was recently published in the Proceedings of the National Academy of Sciences, shows the benefits of targeted intervention with an iPLA2-VIA inhibitor that prevents a major symptom of the disease- cardiolipin deficiency.

"Our research has established a causal role of cardiolipin deficiency in the pathogenesis of Barth syndrome and identified an important enzyme in cardiolipin degradation called iPLA2-VIA as a potential target for therapeutic intervention of the disease," said Mindong Ren, Ph.D., lead investigator of the study and assistant professor of cell biology at NYU Langone Medical Center.

BTHS syndrome is an X-linked genetic cardioskeletal muscle disease resulting in muscle weakness and fatigue in patients. The debilitating disorder is caused by a mutation in the genetic coding of tafazzin, an enzyme of the cardiolipin pathway. Cardiolipin is an essential lipid in the inner membrane of mitochondria responsible for normal cell structure and energy production. BTHS patients exhibit defects in cardiolipin metabolism which help fight infections. The various symptoms of BTHS, in addition to cardiolipin deficiency, include cardiomyopathy (weakness in heart muscle), neutropenia (a reduction in neutrophils or white blood cells that fight bacterial infections), muscle weakness & fatigue (caused by cellular deficiency), growth delay, and increase of organic acids in urine.

In a previous study, NYU researchers documented the characteristics of a tafazzin-deficiency in a Drosophila (fruit fly) model of the disease, showing low and abnormal cardiolipin concentration, abnormal mitochondria, and poor motor function. In this new study researchers documented that tafazzin or cardiolipin deficiency in Drosophila disrupts the final stage of spermatogenesis causing male sterility. Using this fly model, the study showed that this trait of cardiolipin deficiency can be genetically suppressed by inactivating calcium-independent phospholipase A2, which prevents the degradation of cardiolipin. This method keeps cardiolipin levels normal. Researchers were also able to show that treatment of BTHS patients lymphoblasts within a tissue culture with the iPLA2-VIA inhibitor BEL partially restored the tissue cultures cardiolipin homeostasis.

"Taken together, our two findings establish a causal role of cardiolipin deficiency in the pathogenesis of Barth syndrome and identify iPLA2-VIA as a very important enzyme," said Michael Schlame, M.D., associate professor of anesthesiology and cell biology, NYU Langone Medical Center. "This is good news for patients since this enzyme is now a potential target for therapeutic intervention."

According to researchers, although this has not been tested in humans, the successful restoration of these mutated cells with BEL shows promise for continued BTHS research, patients and their families. There are no treatments for Barth syndrome at this time.

This study was funded in part by grants from the Barth Syndrome Foundation, the United Mitochondrial Disease Foundation, and NIH.

Link to full article published in Proceedings of the National Academy of Sciences: http://www.pnas.org/content/106/7/2337.full?sid=14754cf1-3343-490f-a418-ef589e10e510

Lauren Woods | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>