Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential cause of Parkinson's disease points to new therapeutic strategy

25.07.2013
Biologists at The Scripps Research Institute (TSRI) have made a significant discovery that could lead to a new therapeutic strategy for Parkinson’s disease.

The findings, recently published online ahead of print in the journal Molecular and Cell Biology, focus on an enzyme known as parkin, whose absence causes an early-onset form of Parkinson’s disease. Precisely how the loss of this enzyme leads to the deaths of neurons has been unclear. But the TSRI researchers showed that parkin’s loss sharply reduces the level of another protein that normally helps protect neurons from stress.

“We now have a good model for how parkin loss can lead to the deaths of neurons under stress,” said TSRI Professor Steven I. Reed, who was senior author of the new study. “This also suggests a therapeutic strategy that might work against Parkinson’s and other neurodegenerative diseases.”

Genetic Clues

Parkinson’s is the world’s second-most common neurodegenerative disease, affecting about one million people in the United States alone. The disease is usually diagnosed after the appearance of the characteristic motor symptoms, which include tremor, muscle rigidity and slowness of movements. These symptoms are caused by the loss of neurons in the substantia nigra, a brain region that normally supplies the neurotransmitter dopamine to other regions that regulate muscle movements.

Most cases of Parkinson’s are considered “sporadic” and are thought to be caused by a variable mix of factors including advanced age, subtle genetic influences, chronic neuroinflammation and exposure to pesticides and other toxins. But between 5 and 15 percent of cases arise specifically from inherited gene mutations. Among these, mutations to the parkin gene are relatively common. Patients who have no functional parkin gene typically develop Parkinson’s-like symptoms before age 40.

Parkin belongs to a family of enzymes called ubiquitin ligases, whose main function is to regulate the levels of other proteins. They do so principally by “tagging” their protein targets with ubiquitin molecules, thus marking them for disposal by roving protein-breakers in cells known as proteasomes. Because parkin is a ubiquitin ligase, researchers have assumed that its absence allows some other protein or proteins to evade proteasomal destruction and thus accumulate abnormally and harm neurons. But since 1998, when parkin mutations were first identified as a cause of early-onset Parkinson’s, consensus about the identity of this protein culprit has been elusive.

“There have been a lot of theories, but no one has come up with a truly satisfactory answer,” Reed said.

Oxidative Stress

In 2005, Reed and his postdoctoral research associate (and wife) Susanna Ekholm-Reed decided to investigate a report that parkin associates with another ubiquitin ligase known as Fbw7. “We soon discovered that parkin regulates Fbw7 levels by tagging it with ubiquitin and thus targeting it for degradation by the proteasome,” said Ekholm-Reed.

Loss of parkin, they found, leads to rises in Fbw7 levels, specifically for a form of the protein known as Fbw7â. The scientists observed these elevated levels of Fbw7â in embryonic mouse neurons from which parkin had been deleted, in transgenic mice that were born without the parkin gene, and even in autopsied brain tissue from Parkinson’s patients who had parkin mutations.

Subsequent experiments showed that when neurons are exposed to harmful molecules known as reactive oxygen species, parkin appears to work harder at tagging Fbw7â for destruction, so that Fbw7â levels fall. Without the parkin-driven decrease in Fbw7â levels, the neurons become more sensitive to this “oxidative stress”—so that more of them undergo a programmed self-destruction called apoptosis. Oxidative stress, to which dopamine-producing substantia nigra neurons may be particularly vulnerable, has long been considered a likely contributor to Parkinson’s.

“We realized that there must be a downstream target of Fbw7â that’s important for neuronal survival during oxidative stress,” said Ekholm-Reed.

A New Neuroprotective Strategy

The research slowed for a period due to a lack of funding. But then, in 2011, came a breakthrough. Other researchers who were investigating Fbw7’s role in cancer reported that it normally tags a cell-survival protein called Mcl-1 for destruction. The loss of Fbw7 leads to rises in Mcl-1, which in turn makes cells more resistant to apoptosis. “We were very excited about that finding,” said Ekholm-Reed. The TSRI lab’s experiments quickly confirmed the chain of events in neurons: parkin keeps levels of Fbw7â under control, and Fbw7â keeps levels of Mcl-1 under control. Full silencing of Mcl-1 leaves neurons extremely sensitive to oxidative stress.

Members of the team suspect that this is the principal explanation for how parkin mutations lead to Parkinson’s disease. But perhaps more importantly, they believe that their discovery points to a broad new “neuroprotective” strategy: reducing the Fbw7â-mediated destruction of Mcl-1 in neurons, which should make neurons more resistant to oxidative and other stresses.

“If we can find a way to inhibit Fbw7â in a way that specifically raises Mcl-1 levels, we might be able to prevent the progressive neuronal loss that’s seen not only in Parkinson’s but also in other major neurological diseases, such as Huntington’s disease and ALS [amyotrophic lateral sclerosis],” said Reed.

Finding such an Mcl-1-boosting compound, he added, is now a major focus of his laboratory’s work.

Authors of the study, “Parkin-Dependent Degradation of the F-box protein Fbw7 â Promotes Neuronal Survival in Response to Oxidative stress by Stabilizing Mcl-1,” include Matthew S. Goldberg of The University of Texas Southwestern Medical Center at Dallas and Michael G. Schlossmacher of the University of Ottawa. For more information about the paper, see http://mcb.asm.org/content/early/2013/07/11/MCB.00535-13.abstract?sid=915f437b-09b5-46db-91cf-51b5d0536960

Funding for the study was provided in part by the National Institutes of Health (NS059904 and CA078343).

About The Scripps Research Institute
The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-2666
Fax: 858-784-8136
press@scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>