Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential Medical Treatment Surfaces in Squid Research

27.08.2010
Ted Uyeno has been filled with curiosity for how things work since he was a child. At five years old while visiting a tide pool on Vancouver Island, he touched a sea anemone for the first time and wanted to know how it worked. That simple act set Uyeno on a path of scientific research and discovery—a path that eventually led him to Northern Arizona University.

A postdoctoral research associate and adjunct professor in the biology department at NAU, Uyeno’s curiosity is currently rapt in the study of circulatory systems of cephalopods, mainly squid. He is intent on discovering how its evolved systems may lead to new treatments for human ailments.

Referring to himself as a “reverse mechanic”, Uyeno examines the structure of an existing biological system and deconstructs it to understand how it functions. He then takes that understanding and relates it to other species.

“It’s called comparative biomechanics,” Uyeno says. “We look at homologous structures of species and compare them to determine why differences occur.”

Uyeno believes squid can teach us how to treat peripheral arterial disease, which can be caused by diabetes and atherosclerosis. The possible applications of a squid’s circulatory system struck him one day when his friend asked him for a ride.

“He needed a lift because his diabetes had led to having one of his feet amputated,” Uyeno says. “Diabetes leads to amputation when blood vessels lose elasticity, and blood begins pooling in the extremities. There’s not enough pressure to get the blood back to the heart.”

Uyeno thought of the evolutionary twists and turns which led to squid and other cephalopods shedding the slow, slimy trail of their ancestors and developing advanced, efficient systems that cinched them higher up on the food chain.

As squid evolved from their distant snail-like relatives, their blood circulation changed from an open, low-pressure system to a closed system that supports a more vigorous level of activity. Their circulatory system includes a central, larger heart which pumps blood to the tissues while two smaller accessory hearts force blood through the gills and back to the central heart.

High-energy animals driven by jet propulsion, squid can out-swim tuna over short distances. Their unique circulatory system and accessory hearts boost efficiency. Uyeno admits that relating circulatory systems of squid to a possible solution for peripheral arterial disease in humans could seem a stretch. But he sees potential answers in the evolution of squid, which has made them strong, large, fast and plentiful.

After studying Humboldt squid for three summers in the Sea of Cortez, Uyeno, his colleague Kiisa Nishikawa, and undergraduate student Duane Barbano have found practical applications in addressing peripheral arterial disease. Through NAU Ventures and a partnership with the Northern Arizona Center for Emerging Technologies, Uyeno hopes his research will make a difference in the lives of many people.

“A design for a biomedical device has been developed based on cephalopod circulatory morphology and the intellectual property is now being managed by NAU Ventures,” he says.

In the meantime, Uyeno’s research continues with squid, specifically examining how muscle articulation and flexibility can serve as biological inspiration for robotics devices. His curiosity surrounding marine creatures shows no sign of waning.

“Still, some 30-odd years later, I’m asking the same question. How do these work?”

Research gets sea legs from grant, National Geographic

Humboldt squid seem to be thriving around the world, making it the perfect species for Ted Uyeno’s research. Ten years ago, the species was predominantly found in the coastal waters off of Chile and in the past year or so it’s shown up with regularity in the waters off Alaska. Uyeno conducted his field work in the Sea of Cortez, where the squid are abundant.

The Arizona Board of Regents’ Technology and Research Initiative Fund provided the grant support needed to keep Uyeno’s study afloat for 2008-9.

When he determined earlier this year that he needed additional specimens for his research, Uyeno approached National Geographic to support his third summer expedition. In exchange for providing resources necessary for the trip, National Geographic asked Uyeno to act as a scientific consultant on Dangerous Encounters with Brady Barr. The Dangerous Encounters episode, titled “Cannibal Squid,” aired on the National Geographic Channel on July 30.

“National Geographic provided everything I needed,” Uyeno says. “It was fun because we were able to mount cameras on the squid and document what they do when they don’t think we’re watching.”

Cindy Brown | Newswise Science News
Further information:
http://www.nau.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>