Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential lung cancer vaccine shows renewed promise

21.03.2014

Researchers at UC Davis have found that the investigational cancer vaccine tecemotide, when administered with the chemotherapeutic cisplatin, boosted immune response and reduced the number of tumors in mice with lung cancer.

The study also found that radiation treatments did not significantly impair the immune response. The paper was published on March 10 in the journal Cancer Immunology Research, an American Association for Cancer Research (AACR) publication.


Michael DeGregorio

Though tecemotide, also known as Stimuvax, has shown great potential at times, the recent Phase III trial found no overall survival benefit for patients with non-small cell lung cancer (NSCLC). However, further analysis showed one group of patients, who received concurrent chemotherapy and radiation followed by tecemotide, did benefit from the vaccine. As a result, tecemotide’s manufacturer, Merck KGaA, is sponsoring additional post-clinical animal and human studies, so far with good results.

“There aren’t any good options for patients with inoperable stage III lung cancer following mainline chemotherapies,” said UC Davis Professor of Medicine and lead author Michael DeGregorio. “We are looking at tecemotide as a potential maintenance therapy to prolong survival and improve quality of life.”

... more about:
»Cancer »Merck »immune »lung »therapies

Tecemotide activates an immune response by targeting the protein MUC1, which is often overexpressed in lung, breast, prostate and other cancers. The vaccine stimulates production of interferon gamma and MUC1-targeted killer T-lymphocytes, which seek out and destroy MUC1 cancer cells.

The team, which included investigators from the UC Davis School of Veterinary Medicine and the Department of Radiation Oncology, wanted to know if cisplatin/tecemotide treatments, along with radiation therapy, could boost the immune response and alter lung cancer’s trajectory, stabilizing the disease.

The study produced a number of positive results. Tecemotide increased interferon gamma levels and boosted the T-cell response to MUC1-expressing cancer cells. When administered by themselves, both tecemotide and cisplatin reduced the number of lung tumors. However, combining these therapies enhanced their impact, suggesting that tecemotide may increase cisplatin’s anticancer activity.

Though radiation therapy did reduce the number of lymphocytes, it did not appear to hamper the immune response. In addition, interferon levels actually increased several hours after radiation treatments.

“Radiation may actually be helpful by exposing targets for the vaccine,” said DeGregorio.

While this study revives hope for tecemotide as a potential NSCLC therapy, there are still questions to be answered. Researchers need to further refine these therapies to determine which protocols provide the best survival benefits. In addition, tecemotide can only be effective if it does not exhaust the immune system in the process. Still, the research provides a ray of hope for patients with few options.

“We believe this vaccine could be coupled with standard treatments to create a maintenance therapy,” said DeGregorio. “If we can help patients with a life expectancy of 18 to 20 months increase that to 30 months or more, with a high quality of life, that’s a big benefit.”

Other authors included: Chiao-Jung Kao, Gregory T. Wurz, Arta M. Monjazeb, Daniel P. Vang, Timothy B. Cadman, Stephen M. Griffey, all of UC Davis; and Michael Wolf of Merck.

This study was funded by a grant from Merck KGaA.

UC Davis Comprehensive Cancer Center
UC Davis Comprehensive Cancer Center is the only National Cancer Institute-designated center serving the Central Valley and inland Northern California, a region of more than 6 million people. Its specialists provide compassionate, comprehensive care for more than 10,000 adults and children every year, and access to more than 150 clinical trials at any given time. Its innovative research program engages more than 280 scientists at UC Davis, Lawrence Livermore National Laboratory and Jackson Laboratory (JAX West), whose scientific partnerships advance discovery of new tools to diagnose and treat cancer. Through the Cancer Care Network, UC Davis collaborates with a number of hospitals and clinical centers throughout the Central Valley and Northern California regions to offer the latest cancer care. Its community-based outreach and education programs address disparities in cancer outcomes across diverse populations. For more information, visit cancer.ucdavis.edu.

Dorsey Griffith | EurekAlert!

Further reports about: Cancer Merck immune lung therapies

More articles from Life Sciences:

nachricht Faster detection of pathogens in the lungs
24.06.2016 | Universität Zürich

nachricht How yeast cells regulate their fat balance
23.06.2016 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

Im Focus: CWRU physicists deploy magnetic vortex to control electron spin

Potential technology for quantum computing, keener sensors

Researchers at Case Western Reserve University have developed a way to swiftly and precisely control electron spins at room temperature.

Im Focus: Physicists measured something new in the radioactive decay of neutrons

The experiment inspired theorists; future ones could reveal new physics

A physics experiment performed at the National Institute of Standards and Technology (NIST) has enhanced scientists' understanding of how free neutrons decay...

Im Focus: Discovery of gold nanocluster 'double' hints at other shape changing particles

New analysis approach brings two unique atomic structures into focus

Chemically the same, graphite and diamonds are as physically distinct as two minerals can be, one opaque and soft, the other translucent and hard. What makes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

 
Latest News

Nanoscientists develop the 'ultimate discovery tool'

24.06.2016 | Materials Sciences

Russian physicists create a high-precision 'quantum ruler'

24.06.2016 | Physics and Astronomy

Hubble confirms new dark spot on Neptune

24.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>