Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential HIV drug keeps virus out of cells

19.08.2010
University of Utah biochemist hopes to begin human clinical trials in two to three years

Following up a pioneering 2007 proof-of-concept study, a University of Utah biochemist and colleagues have developed a promising new anti-HIV drug candidate, PIE12-trimer, that prevents HIV from attacking human cells.

Michael S. Kay, M.D., Ph.D., associate professor of biochemistry in the University of Utah School of Medicine and senior author of the study published Wednesday, Aug. 18, 2010, online by the Journal of Virology, is raising funds to begin animal safety studies, followed by human clinical trials in two to three years. Kay believes PIE12-trimer is ideally suited for use as a vaginal microbicide (topically applied drug) to prevent HIV infection. His research group is particularly focused on preventing the spread of HIV in Africa, which has an estimated two-thirds of the world's 33 million HIV patients according to the World Health Organization.

"We believe that PIE12-trimer could provide a major new weapon in the arsenal against HIV/AIDS. Because of its ability to block the virus from infecting new cells, PIE12-trimer has the potential to work as a microbicide to prevent people from contracting HIV and as a treatment for HIV infected people. HIV can develop resistance rapidly to existing drugs, so there is a constant need to develop new drugs in hopes of staying ahead of the virus." Kay said.

PIE12-trimer was designed with a unique "resistance capacitor" that provides it with a strong defense against the emergence of drug-resistant viruses.

Peptide drugs have great therapeutic potential, but are often hampered by their rapid degradation in the body. D-peptides are mirror-image versions of natural peptides that cannot be broken down, potentially leading to higher potency and longevity in the body. Despite these potential advantages, no D-peptides have yet been developed.

PIE12-trimer consists of three D-peptides (PIE12) linked together that block a "pocket" on the surface of HIV critical for HIV's gaining entry into the cell. "Clinical trials will determine if PIE12-trimer is as effective in humans as it is in the lab," Kay said.

Across the world, HIV occurs in many different strains and has the ability to mutate to resist drugs aimed at stopping it. Due to the high conservation of the pocket region across strains, PIE12-trimer worked against all major HIV strains worldwide, from Southeast Asia and South America to the United States and Africa.

To help advance toward human clinical trials, Kay and co-authors Brett D. Welch, Ph.D., and Debra M. Eckert, Ph.D., research assistant professor of biochemistry, formed a company, Kayak Biosciences, which is owned by the University of Utah Research Foundation. If PIE12-trimer proves to be an effective and safe drug against HIV, the same D-Peptide drug design principles can be applied against other viruses, according to Kay. Approval of the first D-peptide drug would also greatly stimulate development of other D-peptide drugs.

The study's first authors are Welch, and U of U graduate student J. Nicholas Francis. Also contributing were U graduate students Joseph Redman and Matthew Weinstock, as well as Eckert. Images of how PIE12 binds to the HIV pocket were obtained using X-ray crystallography, a technology that provides high-resolution analysis of atomic structures, and were provided by Frank Whitby, Ph.D., research assistant professor of biochemistry, and Christopher P. Hill, Ph.D., professor and co-chair of the Department of Biochemistry. The study includes colleagues from Thomas Jefferson University in Philadelphia and Monogram Biosciences, South San Francisco, Calif.

This research was funded by the National Institutes of Health and the University of Utah Research Foundation.

Phil Sahm | EurekAlert!
Further information:
http://www.utah.edu

Further reports about: D-peptide HIV PIE12 PIE12-trimer atomic structure health services human cell

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>