Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential HIV drug keeps virus out of cells

19.08.2010
University of Utah biochemist hopes to begin human clinical trials in two to three years

Following up a pioneering 2007 proof-of-concept study, a University of Utah biochemist and colleagues have developed a promising new anti-HIV drug candidate, PIE12-trimer, that prevents HIV from attacking human cells.

Michael S. Kay, M.D., Ph.D., associate professor of biochemistry in the University of Utah School of Medicine and senior author of the study published Wednesday, Aug. 18, 2010, online by the Journal of Virology, is raising funds to begin animal safety studies, followed by human clinical trials in two to three years. Kay believes PIE12-trimer is ideally suited for use as a vaginal microbicide (topically applied drug) to prevent HIV infection. His research group is particularly focused on preventing the spread of HIV in Africa, which has an estimated two-thirds of the world's 33 million HIV patients according to the World Health Organization.

"We believe that PIE12-trimer could provide a major new weapon in the arsenal against HIV/AIDS. Because of its ability to block the virus from infecting new cells, PIE12-trimer has the potential to work as a microbicide to prevent people from contracting HIV and as a treatment for HIV infected people. HIV can develop resistance rapidly to existing drugs, so there is a constant need to develop new drugs in hopes of staying ahead of the virus." Kay said.

PIE12-trimer was designed with a unique "resistance capacitor" that provides it with a strong defense against the emergence of drug-resistant viruses.

Peptide drugs have great therapeutic potential, but are often hampered by their rapid degradation in the body. D-peptides are mirror-image versions of natural peptides that cannot be broken down, potentially leading to higher potency and longevity in the body. Despite these potential advantages, no D-peptides have yet been developed.

PIE12-trimer consists of three D-peptides (PIE12) linked together that block a "pocket" on the surface of HIV critical for HIV's gaining entry into the cell. "Clinical trials will determine if PIE12-trimer is as effective in humans as it is in the lab," Kay said.

Across the world, HIV occurs in many different strains and has the ability to mutate to resist drugs aimed at stopping it. Due to the high conservation of the pocket region across strains, PIE12-trimer worked against all major HIV strains worldwide, from Southeast Asia and South America to the United States and Africa.

To help advance toward human clinical trials, Kay and co-authors Brett D. Welch, Ph.D., and Debra M. Eckert, Ph.D., research assistant professor of biochemistry, formed a company, Kayak Biosciences, which is owned by the University of Utah Research Foundation. If PIE12-trimer proves to be an effective and safe drug against HIV, the same D-Peptide drug design principles can be applied against other viruses, according to Kay. Approval of the first D-peptide drug would also greatly stimulate development of other D-peptide drugs.

The study's first authors are Welch, and U of U graduate student J. Nicholas Francis. Also contributing were U graduate students Joseph Redman and Matthew Weinstock, as well as Eckert. Images of how PIE12 binds to the HIV pocket were obtained using X-ray crystallography, a technology that provides high-resolution analysis of atomic structures, and were provided by Frank Whitby, Ph.D., research assistant professor of biochemistry, and Christopher P. Hill, Ph.D., professor and co-chair of the Department of Biochemistry. The study includes colleagues from Thomas Jefferson University in Philadelphia and Monogram Biosciences, South San Francisco, Calif.

This research was funded by the National Institutes of Health and the University of Utah Research Foundation.

Phil Sahm | EurekAlert!
Further information:
http://www.utah.edu

Further reports about: D-peptide HIV PIE12 PIE12-trimer atomic structure health services human cell

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>