Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New potential atherosclerosis risk marker discovered

12.04.2011
How your carotid artery moves can reveal your risk of a future heart attack, and it is now possible to study this vessel aspect in more detail thanks to a new technique which could eventually be used to identify patients with suspected coronary artery disease, reveals a thesis from the University of Gothenburg, Sweden.

Atherosclerosis in the coronary arteries is associated with a risk of future heart disease, and it is therefore important to find risk markers for atherosclerotic disease.

“When the heart beats, the body's blood vessels increase in diameter, and there is also movement alongside the blood vessels, known as longitudinal displacement, or tLod,” explains researcher Sara Svedlund from the Department of Molecular and Clinical Medicine at the Sahlgrenska Academy. “It was not previously possible to tell whether this movement had any impact on health, as there was a lack of adequate measurement techniques.”

In her thesis, Svedlund investigated whether ultrasound technique could be used to study tLoD in the blood vessels in the neck. This would provide a simple and painless method of identifying patients at increased risk of coronary artery disease.

She used an advanced imaging analysis technique to study movement in the carotid artery using standard clinical ultrasound images. The method was tested on around 500 people, both patients with suspected coronary artery disease and healthy volunteers. It has also been transferred to experimental animal models for more in-depth studies in future.

Patients with reduced longitudinal displacement along the carotid artery have more extensive atherosclerosis in that artery, impaired heart function and a greater tendency to suffer from a shortage of oxygen in the heart. In a follow-up study, Svedlund has also been able to show that this new risk marker can predict the risk of future cardiovascular events.

“Today's methods look only at the thickness of the artery walls when identifying atherosclerosis. Our technique shows that longitudinal displacement in the carotid artery reflects both the degree of atherosclerosis in the artery and heart function. This new method may therefore give us additional information and enable us to predict which patients run an increased risk of future heart disease. We will follow up these interesting findings in further studies to establish the technique which potentially can be used in clinical routine in the future.”

ATHEROSCLEROSIS
Atherosclerosis is the accumulation of cholesterol in the arteries to form hard plaques, which can cause diseases such as angina, heart attacks and strokes. Atherosclerosis-related diseases cause 40-50% of all deaths in Sweden each year.
For more information, please contact:
Sara Svedlund, MD and PhD student, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, e-mail: sara.svedlund@gu.se
Journal: Clin Physiol Funct Imaging. 2011 Jan;31(1):32-8.
Authors: Sara Svedlund, Li-ming Gan.
Title: Longitudinal Wall Motion of the Common Carotid Artery Can be Assessed by Velocity Vector Ultrasound Imaging

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/23938
http://www.gu.se

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>