Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New potential atherosclerosis risk marker discovered

12.04.2011
How your carotid artery moves can reveal your risk of a future heart attack, and it is now possible to study this vessel aspect in more detail thanks to a new technique which could eventually be used to identify patients with suspected coronary artery disease, reveals a thesis from the University of Gothenburg, Sweden.

Atherosclerosis in the coronary arteries is associated with a risk of future heart disease, and it is therefore important to find risk markers for atherosclerotic disease.

“When the heart beats, the body's blood vessels increase in diameter, and there is also movement alongside the blood vessels, known as longitudinal displacement, or tLod,” explains researcher Sara Svedlund from the Department of Molecular and Clinical Medicine at the Sahlgrenska Academy. “It was not previously possible to tell whether this movement had any impact on health, as there was a lack of adequate measurement techniques.”

In her thesis, Svedlund investigated whether ultrasound technique could be used to study tLoD in the blood vessels in the neck. This would provide a simple and painless method of identifying patients at increased risk of coronary artery disease.

She used an advanced imaging analysis technique to study movement in the carotid artery using standard clinical ultrasound images. The method was tested on around 500 people, both patients with suspected coronary artery disease and healthy volunteers. It has also been transferred to experimental animal models for more in-depth studies in future.

Patients with reduced longitudinal displacement along the carotid artery have more extensive atherosclerosis in that artery, impaired heart function and a greater tendency to suffer from a shortage of oxygen in the heart. In a follow-up study, Svedlund has also been able to show that this new risk marker can predict the risk of future cardiovascular events.

“Today's methods look only at the thickness of the artery walls when identifying atherosclerosis. Our technique shows that longitudinal displacement in the carotid artery reflects both the degree of atherosclerosis in the artery and heart function. This new method may therefore give us additional information and enable us to predict which patients run an increased risk of future heart disease. We will follow up these interesting findings in further studies to establish the technique which potentially can be used in clinical routine in the future.”

ATHEROSCLEROSIS
Atherosclerosis is the accumulation of cholesterol in the arteries to form hard plaques, which can cause diseases such as angina, heart attacks and strokes. Atherosclerosis-related diseases cause 40-50% of all deaths in Sweden each year.
For more information, please contact:
Sara Svedlund, MD and PhD student, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, e-mail: sara.svedlund@gu.se
Journal: Clin Physiol Funct Imaging. 2011 Jan;31(1):32-8.
Authors: Sara Svedlund, Li-ming Gan.
Title: Longitudinal Wall Motion of the Common Carotid Artery Can be Assessed by Velocity Vector Ultrasound Imaging

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/23938
http://www.gu.se

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>