Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potent metastasis inhibitor identified

24.06.2009
Could curb a cancer's deadliness

Researchers at Children's Hospital Boston have isolated a potent inhibitor of tumor metastasis made by tumor cells, one that could potentially be harnessed as a cancer treatment. Their findings were published in the online Early Edition of the Proceedings of the National Academy of Sciences during the week of June 22.

Metastasis—the migration of cancer cells to other parts of the body—is one of the leading causes of death from cancer, and there is no approved therapy for inhibiting or treating metastases. Randoph S. Watnick, PhD, an assistant professor in the Vascular Biology Program at Children's, has been finding that metastatic tumors prepare landing places in distant organs for their metastases, by secreting certain proteins that encourage tumor growth and attract feeder blood vessels. Now, he and his colleagues show that non-metastatic tumors secrete a protein called prosaposin -- which inhibits metastasis by causing production of factors that block the growth of blood vessels.

Cells from localized prostate and breast tumors, which didn't metastasize, secreted high levels of prosaposin, they found, while metastatic tumors secreted very little. When the researchers injected mice with tumor cells that were known to be highly metastatic, but to which they had added prosaposin, lung metastases were reduced by 80 percent and lymph node metastases were completely eliminated, and survival time was significantly increased. Conversely, when they suppressed prosaposin expression in tumor cells, they saw more metastases.

When prosaposin was directly injected into mice that had also received an injection of tumor cells, the tumor cells formed virtually no metastases in the lung, or, if they did, formed much smaller colonies. These mice lived at least 30 percent longer than mice not receiving prosaposin.

Watnick and colleagues also demonstrated that prosaposin stimulates activity of the well-known tumor suppressor p53 in the connective tissue (stroma) surrounding the tumor. This in turn stimulated production of thrombospondin-1, a natural inhibitor of blood vessel growth (angiogenesis), both in the tumor stroma and in cells at the distant location.

"Prosaposin, or derivatives that stimulate p53 activity in a similar manner in the tumor stroma, might be an effective way to inhibit the metastatic process in humans," says Watnick.

If this bears out, Watnick envisions treating cancer patients for their primary tumor, and concurrently giving them drugs to prevent metastases or slow their growth. "While we may not be able to keep patients from getting cancer, we can potentially keep them metastasis-free," he says.

Initially, Watnick's scientific interest was focused on metastatic cancer cells; he hoped to use proteomics techniques to isolate different proteins that steered metastases to different parts of the body (explaining, for example, why lung cancer often metastasizes to bone, or prostate cancer to liver). But the late Judah Folkman, MD, founder of the Vascular Biology program at Children's, encouraged him to focus on the metastasis inhibitor -- prosaposin. "You might have a drug right here," he told Watnick.

A patent has been filed by Children's Hospital Boston on the discovery. The hospital's Technology and Innovation Development Office is in active discussions to license prosaposin for commercial development.

The study was funded by the Gackstatter Foundation, a grant from the National Aeronautics and Space Administration and a Breast Cancer Innovator Award from the Department of Defense.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 500 scientists, including eight members of the National Academy of Sciences, 11 members of the Institute of Medicine and 12 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 397-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about the hospital and its research visit: www.childrenshospital.org/newsroom.

Bess Andrews | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>