Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Potent mechanism helps viruses shut down body's defense system against infection

Salk Institute findings may lead to new broad-spectrum antiviral drugs

Researchers at the Salk Institute for Biological Studies have discovered a powerful mechanism by which viruses such as influenza, West Nile and Dengue evade the body's immune response and infect humans with these potentially deadly diseases. The findings may provide scientists with an attractive target for novel antiviral therapies.

Published in the August issue of the journal Cell Host and Microbe, the findings describe a novel mechanism that this group of so-called "enveloped viruses" uses to disarm the host's innate immune response. The mechanism the scientists uncovered is based on these viruses activating a class of molecules, known as TAM receptors, which are located on the outside of certain immune cells.

In the immune system, TAM receptors are used by cells, such as macrophages and dendritic cells, to clean up dead cells, and they are also central inhibitors of the body's innate immune response to bacteria, viruses and other pathogens.

The Salk scientists found that a substance called phosphatidylserine (PtdSer), which is found on the surface of enveloped viruses (viruses with an outer wrapping of a lipid membrane), binds to extracellular proteins and activates TAM receptors on immune cells. In dendritic cells, a type of immune cell that interacts with T and B cells to initiate the adaptive immune response, TAM receptor activation turns off a set of genes called interferons that play a key role in antiviral defense.

"Our findings suggest a unique way in which TAM receptors contribute to the establishment of viral infection by disabling the interferon response," says co-lead study author John A.T. Young, a professor in Salk's Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis. "As a consequence, the interferon-stimulated defense genes are not turned on, rendering the target cell more permissive for virus infection."

This is a previously unknown mechanism for enveloped viruses, which are very common, to inhibit the body's normal antiviral response. Since PtdSer exposure seems to be a general feature of enveloped viruses, the researchers say many different viruses may use the mechanism to counteract the cellular antiviral response in cells with TAM receptors.

Understanding this mechanism allows researchers to work on developing broad-spectrum antiviral drugs that prevent viruses from shutting down the interferon response in cells by blocking TAM receptor activation. In their study, the Salk scientists tested a small-molecule drug called BMS-777607, initially developed for anti-cancer therapy, that does just that.

"With this small molecule, viruses can't activate TAM receptors, so they can't shut down the interferon response," says co-lead author Greg Lemke, a professor in Salk's Molecular Neurobiology Laboratory and the Françoise Gilot-Salk Chair, in whose laboratory TAM receptors were discovered.

With other scientists around the country, the Salk researchers are testing a variety of small molecule drugs in series of different viruses, including West Nile, Dengue, influenza, Ebola, Marburg, and hepatitis B. These drugs work, in large part, by blocking the virus' ability to activate TAM receptors, thereby leaving the interferon-mediated antiviral response intact.

"This is a completely novel approach," says Young, who holds the Nomis Foundation Chair at Salk. "It is a way of exploiting a normal piece of the cellular machinery in the immune system to block virus infections." And, if it works, it may prove to be an effective treatment to clear enveloped viruses during the acute phase of infection and perhaps also in chronic virus infections.

Other researchers on the study were co-first authors Suchita Bhattacharyya and Anna Zagόrska, as well as Erin D. Lew and John Naughton, from the Salk Institute; Bimmi Shrestha and Michael S. Diamond of Washington University; and Carla V. Rothlin of Yale University.

The study was supported by the National Institutes of Health, the Nomis and Auen Foundations, the James B. Pendleton Charitable Trust, a Salk Institute innovation grant, the Human Frontiers Science Program, and the Leukemia and Lymphoma Society.

About the Salk Institute for Biological Studies:

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Kat Kearney | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>