Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potent mechanism helps viruses shut down body's defense system against infection

15.08.2013
Salk Institute findings may lead to new broad-spectrum antiviral drugs

Researchers at the Salk Institute for Biological Studies have discovered a powerful mechanism by which viruses such as influenza, West Nile and Dengue evade the body's immune response and infect humans with these potentially deadly diseases. The findings may provide scientists with an attractive target for novel antiviral therapies.

Published in the August issue of the journal Cell Host and Microbe, the findings describe a novel mechanism that this group of so-called "enveloped viruses" uses to disarm the host's innate immune response. The mechanism the scientists uncovered is based on these viruses activating a class of molecules, known as TAM receptors, which are located on the outside of certain immune cells.

In the immune system, TAM receptors are used by cells, such as macrophages and dendritic cells, to clean up dead cells, and they are also central inhibitors of the body's innate immune response to bacteria, viruses and other pathogens.

The Salk scientists found that a substance called phosphatidylserine (PtdSer), which is found on the surface of enveloped viruses (viruses with an outer wrapping of a lipid membrane), binds to extracellular proteins and activates TAM receptors on immune cells. In dendritic cells, a type of immune cell that interacts with T and B cells to initiate the adaptive immune response, TAM receptor activation turns off a set of genes called interferons that play a key role in antiviral defense.

"Our findings suggest a unique way in which TAM receptors contribute to the establishment of viral infection by disabling the interferon response," says co-lead study author John A.T. Young, a professor in Salk's Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis. "As a consequence, the interferon-stimulated defense genes are not turned on, rendering the target cell more permissive for virus infection."

This is a previously unknown mechanism for enveloped viruses, which are very common, to inhibit the body's normal antiviral response. Since PtdSer exposure seems to be a general feature of enveloped viruses, the researchers say many different viruses may use the mechanism to counteract the cellular antiviral response in cells with TAM receptors.

Understanding this mechanism allows researchers to work on developing broad-spectrum antiviral drugs that prevent viruses from shutting down the interferon response in cells by blocking TAM receptor activation. In their study, the Salk scientists tested a small-molecule drug called BMS-777607, initially developed for anti-cancer therapy, that does just that.

"With this small molecule, viruses can't activate TAM receptors, so they can't shut down the interferon response," says co-lead author Greg Lemke, a professor in Salk's Molecular Neurobiology Laboratory and the Françoise Gilot-Salk Chair, in whose laboratory TAM receptors were discovered.

With other scientists around the country, the Salk researchers are testing a variety of small molecule drugs in series of different viruses, including West Nile, Dengue, influenza, Ebola, Marburg, and hepatitis B. These drugs work, in large part, by blocking the virus' ability to activate TAM receptors, thereby leaving the interferon-mediated antiviral response intact.

"This is a completely novel approach," says Young, who holds the Nomis Foundation Chair at Salk. "It is a way of exploiting a normal piece of the cellular machinery in the immune system to block virus infections." And, if it works, it may prove to be an effective treatment to clear enveloped viruses during the acute phase of infection and perhaps also in chronic virus infections.

Other researchers on the study were co-first authors Suchita Bhattacharyya and Anna Zagόrska, as well as Erin D. Lew and John Naughton, from the Salk Institute; Bimmi Shrestha and Michael S. Diamond of Washington University; and Carla V. Rothlin of Yale University.

The study was supported by the National Institutes of Health, the Nomis and Auen Foundations, the James B. Pendleton Charitable Trust, a Salk Institute innovation grant, the Human Frontiers Science Program, and the Leukemia and Lymphoma Society.

About the Salk Institute for Biological Studies:

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Kat Kearney | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>