Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potato Blight Reveals Some Secrets as Genome Is Decoded

11.09.2009
Late blight caused the 19th century famine that sparked a wave of emigration from Ireland to the United States, but the disease has also infected tomatoes and potatoes this year. Potatoes, the world’s fourth-largest food crop, were raised on 65,500 acres in Wisconsin in 2007. If a potato field is not treated with pesticide, late blight can destroy the crop in a few days.

This week (Sept. 9), the online edition of the scientific journal Nature will report on the full genetic sequence, or genome, of Phytophthora infestans, the cause of late blight. The genome resulted from a large international effort, which benefited from significant contributions from scientists at the University of Wisconsin-Madison, to understand the genetics of a plant disease that has evaded many control efforts.

“This pathogen has an exquisite ability to adapt and change, and that’s what makes it so dangerous,” says senior author Chad Nusbaum, co-director of the Genome Sequencing and Analysis Program at the Broad Institute of MIT and Harvard, which directed the sequencing project.

About 75 percent of the genome contains repetitious DNA, which is now seen as key to understanding late blight’s destructive potential, Nusbaum adds. “We now have a comprehensive view of its genome, revealing the unusual properties that drive its remarkable adaptability. Hopefully, this knowledge can foster novel approaches to diagnose and respond to outbreaks.”

To cope with the confusing level of repetition, Broad Institute researchers contacted David Schwartz, a professor of chemistry and genetics at UW-Madison. Schwartz was the principal inventor of the “optical mapping” system, which uniquely complements the traditional, letter-by-letter approach to gene sequencing.

The DNA of late blight contains about 240 million sub-units, or “bases.” To efficiently identify these units, scientists first cut the DNA into shorter chunks, and later digitally reassemble the chunks into one long sequence. But traditional sequencing technology gets confused by genomes that contain so much repetition, Schwartz says.

The advantage of optical mapping can be seen by comparison to digital maps, Schwartz says. “In a digital map; you can see the streets; like optical mapping, this is a medium-resolution picture of the subject. Then you can switch to a high-resolution street view. You can count windows in the houses, but it’s hard to see how the houses fit together. It’s the same with traditional gene sequencing: You get a much higher resolution view, but it’s harder to know where the units are located.”

Optical mapping was particularly helpful with the nettlesome genome of late blight, Schwartz adds. “It’s full of repeated DNA sequences, so all the windows look the same and it’s hard to know where the house should go. Combining the letter-by-letter information from sequencing with the broader view from optical mapping allowed us to put the genome together.”

The DNA chunks that used optical mapping “are much longer than those used in traditional sequencing and mapping, which means we can span lots of gaps that others cannot,” adds Shiguo Zhou, Schwartz’s colleague in the Laboratory for Molecular and Computational Genomics and the principal scientist constructing the map. “We can characterize regions where you see the same code repeated over and over and put whole genome together.”

The study found that the late blight genome is two and a half to four times larger than those of its relatives, mainly due to a massive amount of repetitive DNA. Although these repetitive regions contain only a few genes, they are specialized for attacking plants, so understanding the repetitions may help explain why late blight is such an effective plant pathogen.

The research group hopes that further exploration of the genome will reveal weak links in the organism’s offensive strategy. According to co-lead author Brian Haas of the Broad Institute, “The repeat-rich regions change rapidly over time, acting as a kind of incubator to enable the rapid birth and death of genes that are key to plant infection. As a result, these critical genes may be gained and lost so rapidly that the hosts simply can’t keep up.”

Dave Tenenbaum | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>