Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No pores in the war on epilepsy

20.04.2009
A significant form of epilepsy is genetically linked to a non-membrane channel protein

A RIKEN-led research team has gathered strong biological evidence that mutations in the gene EFHC1 trigger the onset of a common form of adolescent epilepsy for which there is currently no explanation. The mutations also increase susceptibility to epileptic seizures.

The gene encodes myoclonin1, a protein found in adults in cilia—the hair-like projections that line the windpipe and the ventricles or cavities in the brain. During development, myoclonin1 is also found in the cells that produce the cerebrospinal fluid in the ventricles.

EFHC1 is one of the few genes known to be directly involved in the onset of epilepsy that does not code for a protein associated with the ion channels or pores in the plasma membrane. The researchers hope their findings can one day be translated into better treatment of juvenile myoclonic epilepsy.

The research group, led by Kazuhiro Yamakawa of RIKEN’s Brain Science Institute in Wako, had previously found an association between EFHC1 mutants and epilepsy. It had also determined the tissues in which myoclonin1 was produced. While work by other groups supported these findings, there was no direct biological or physiological evidence that EFHC1 deficiency caused epilepsy. Details of how the researchers gathered that evidence were recently published in Human Molecular Genetics1.

Initially, the researchers generated Efhc1-deficient mice. These mutant mice appeared normal and were fertile both in the null form where two copies of the Efhc1 gene were defective and in the heterozygous form that carried only one defective copy. As they grew, however, mice of both forms began to display increased levels of the involuntary muscle twitches known as myoclonus, and both began to show increased susceptibility to a chemical known to trigger epileptic seizures.

When the researchers investigated the impact of Efhc1 deficiency on the null form they found enlarged ventricles in the brain and a reduced beating frequency of the cilia—both of which suggested that the onset of epilepsy may have something to do with the circulation of cerebrospinal fluid. But in the heterozygous form, neither of these two abnormalities was apparent, yet the mice showed the same susceptibility to development of epilepsy.

“So we don’t yet have a clear picture of the pathological cascade or mechanism,” says Yamakawa. “But in the knockout mouse we have provided a very important tool to investigate this further. Our next step is to clarify the pathological cascade. That would make a huge contribution to our understanding.”

Reference

1. Suzuki, T., Miyamoto, H., Nakahari, T., Inoue, I., Suemoto, T., Jiang, B., Hirota, Y., Itohara, S., Saido, T.C., Tsumoto, T. et al. Efhc1 deficiency causes spontaneous myoclonus and increased seizure susceptibility. Human Molecular Genetics 18, 1099–1109 (2009).

The corresponding author for this highlight is based at the RIKEN Laboratory for Neurogenetics

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/688/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>