Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No pores in the war on epilepsy

20.04.2009
A significant form of epilepsy is genetically linked to a non-membrane channel protein

A RIKEN-led research team has gathered strong biological evidence that mutations in the gene EFHC1 trigger the onset of a common form of adolescent epilepsy for which there is currently no explanation. The mutations also increase susceptibility to epileptic seizures.

The gene encodes myoclonin1, a protein found in adults in cilia—the hair-like projections that line the windpipe and the ventricles or cavities in the brain. During development, myoclonin1 is also found in the cells that produce the cerebrospinal fluid in the ventricles.

EFHC1 is one of the few genes known to be directly involved in the onset of epilepsy that does not code for a protein associated with the ion channels or pores in the plasma membrane. The researchers hope their findings can one day be translated into better treatment of juvenile myoclonic epilepsy.

The research group, led by Kazuhiro Yamakawa of RIKEN’s Brain Science Institute in Wako, had previously found an association between EFHC1 mutants and epilepsy. It had also determined the tissues in which myoclonin1 was produced. While work by other groups supported these findings, there was no direct biological or physiological evidence that EFHC1 deficiency caused epilepsy. Details of how the researchers gathered that evidence were recently published in Human Molecular Genetics1.

Initially, the researchers generated Efhc1-deficient mice. These mutant mice appeared normal and were fertile both in the null form where two copies of the Efhc1 gene were defective and in the heterozygous form that carried only one defective copy. As they grew, however, mice of both forms began to display increased levels of the involuntary muscle twitches known as myoclonus, and both began to show increased susceptibility to a chemical known to trigger epileptic seizures.

When the researchers investigated the impact of Efhc1 deficiency on the null form they found enlarged ventricles in the brain and a reduced beating frequency of the cilia—both of which suggested that the onset of epilepsy may have something to do with the circulation of cerebrospinal fluid. But in the heterozygous form, neither of these two abnormalities was apparent, yet the mice showed the same susceptibility to development of epilepsy.

“So we don’t yet have a clear picture of the pathological cascade or mechanism,” says Yamakawa. “But in the knockout mouse we have provided a very important tool to investigate this further. Our next step is to clarify the pathological cascade. That would make a huge contribution to our understanding.”

Reference

1. Suzuki, T., Miyamoto, H., Nakahari, T., Inoue, I., Suemoto, T., Jiang, B., Hirota, Y., Itohara, S., Saido, T.C., Tsumoto, T. et al. Efhc1 deficiency causes spontaneous myoclonus and increased seizure susceptibility. Human Molecular Genetics 18, 1099–1109 (2009).

The corresponding author for this highlight is based at the RIKEN Laboratory for Neurogenetics

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/688/
http://www.researchsea.com

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>