Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No pores in the war on epilepsy

20.04.2009
A significant form of epilepsy is genetically linked to a non-membrane channel protein

A RIKEN-led research team has gathered strong biological evidence that mutations in the gene EFHC1 trigger the onset of a common form of adolescent epilepsy for which there is currently no explanation. The mutations also increase susceptibility to epileptic seizures.

The gene encodes myoclonin1, a protein found in adults in cilia—the hair-like projections that line the windpipe and the ventricles or cavities in the brain. During development, myoclonin1 is also found in the cells that produce the cerebrospinal fluid in the ventricles.

EFHC1 is one of the few genes known to be directly involved in the onset of epilepsy that does not code for a protein associated with the ion channels or pores in the plasma membrane. The researchers hope their findings can one day be translated into better treatment of juvenile myoclonic epilepsy.

The research group, led by Kazuhiro Yamakawa of RIKEN’s Brain Science Institute in Wako, had previously found an association between EFHC1 mutants and epilepsy. It had also determined the tissues in which myoclonin1 was produced. While work by other groups supported these findings, there was no direct biological or physiological evidence that EFHC1 deficiency caused epilepsy. Details of how the researchers gathered that evidence were recently published in Human Molecular Genetics1.

Initially, the researchers generated Efhc1-deficient mice. These mutant mice appeared normal and were fertile both in the null form where two copies of the Efhc1 gene were defective and in the heterozygous form that carried only one defective copy. As they grew, however, mice of both forms began to display increased levels of the involuntary muscle twitches known as myoclonus, and both began to show increased susceptibility to a chemical known to trigger epileptic seizures.

When the researchers investigated the impact of Efhc1 deficiency on the null form they found enlarged ventricles in the brain and a reduced beating frequency of the cilia—both of which suggested that the onset of epilepsy may have something to do with the circulation of cerebrospinal fluid. But in the heterozygous form, neither of these two abnormalities was apparent, yet the mice showed the same susceptibility to development of epilepsy.

“So we don’t yet have a clear picture of the pathological cascade or mechanism,” says Yamakawa. “But in the knockout mouse we have provided a very important tool to investigate this further. Our next step is to clarify the pathological cascade. That would make a huge contribution to our understanding.”

Reference

1. Suzuki, T., Miyamoto, H., Nakahari, T., Inoue, I., Suemoto, T., Jiang, B., Hirota, Y., Itohara, S., Saido, T.C., Tsumoto, T. et al. Efhc1 deficiency causes spontaneous myoclonus and increased seizure susceptibility. Human Molecular Genetics 18, 1099–1109 (2009).

The corresponding author for this highlight is based at the RIKEN Laboratory for Neurogenetics

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/688/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>