Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pores for thought

28.09.2009
Porous coordination polymers that strongly adsorb polar guest molecules can be made using a ligand with separated positive and negative charges

A porous coordination polymer (PCP) that strongly adsorbs methanol, a model guest molecule, has been prepared by Masakazu Higuchi from the RIKEN SPring-8 Center in Harima and co-workers from the University of Kyoto, the Japan Synchrotron Radiation Research Institute and Osaka Prefecture University1.

The new material is important because porous materials that can adsorb guest molecules offer opportunities in finding ways to store hydrogen fuel, and to sequester waste gas such as carbon dioxide, which can reduce the impact of burning fossil fuels. Porous coordination polymers (PCPs) provide a particularly attractive option in both endeavors because they contain micropores and their surfaces can be designed to have specific properties.

Also known as metal–organic frameworks (MOFs), PCPs are formed between metal ions—often from transition metals such as zinc—and well-defined organic ligands that can bond to more than one metal atom. With sufficiently rigid ligands, such that a single ligand cannot just coordinate to a single metal ion, it is possible to produce a continuous network of metal ions held together by the ligands. It is within the pores of these PCPs that guest molecules such as gases can be accommodated.

For guest molecules to be adsorbed efficiently they must interact with the pore walls. “We thought that electrostatically charged walls would be beneficial, but this introduced a new problem,” explains Higuchi, “the overall structure must be electrically neutral and the counter-ions required to achieve this occupy the pores of the PCP meaning that they are blocked to guest molecules.”

Higuchi and colleagues’ PCP is based on the coordination of zinc ions with a zwitterionic ligand, which is electrically neutral, but carries separated positive and negative charges. They showed that guest molecules of methanol adsorb more strongly than a similar PCP made with uncharged ligands. It can also adsorb more guest molecules because the pores are not blocked by counter-ions.

The zwitterionic ligand used in the new material described by Higuchi and his colleagues means that the pore walls are highly charged but additional counter-ions are not required. They have also shown that the material adsorbs methanol more strongly than a similar PCP with uncharged pore walls. “In the future, we plan to investigate how other guest molecules interact with the charged pore surface” says Higuchi. “Ultimately, we hope to see this develop into a material that can be made on an industrial scale.”

The corresponding author for this highlight is based at the Spatial Order Research Team, RIKEN SPring-8 Center.

1. Higuchi, M., Tanaka, D., Horike, S., Sakamoto, H., Nakamura, K.,Takashima, Y., Hijikata, Y., Yanai, N., Kim, J., Kato, K. et al. Porous coordination polymer with pyridinium cationic surface, [Zn2(tpa)2(cpb)]. Journal of the American Chemical Society 131, 10336–10337 (2009).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6052
http://www.researchsea.com

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Reptile vocalization is surprisingly flexible

30.05.2017 | Life Sciences

EU research project DEMETER strives for innovation in enzyme production technology

30.05.2017 | Power and Electrical Engineering

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>