Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pores for thought

28.09.2009
Porous coordination polymers that strongly adsorb polar guest molecules can be made using a ligand with separated positive and negative charges

A porous coordination polymer (PCP) that strongly adsorbs methanol, a model guest molecule, has been prepared by Masakazu Higuchi from the RIKEN SPring-8 Center in Harima and co-workers from the University of Kyoto, the Japan Synchrotron Radiation Research Institute and Osaka Prefecture University1.

The new material is important because porous materials that can adsorb guest molecules offer opportunities in finding ways to store hydrogen fuel, and to sequester waste gas such as carbon dioxide, which can reduce the impact of burning fossil fuels. Porous coordination polymers (PCPs) provide a particularly attractive option in both endeavors because they contain micropores and their surfaces can be designed to have specific properties.

Also known as metal–organic frameworks (MOFs), PCPs are formed between metal ions—often from transition metals such as zinc—and well-defined organic ligands that can bond to more than one metal atom. With sufficiently rigid ligands, such that a single ligand cannot just coordinate to a single metal ion, it is possible to produce a continuous network of metal ions held together by the ligands. It is within the pores of these PCPs that guest molecules such as gases can be accommodated.

For guest molecules to be adsorbed efficiently they must interact with the pore walls. “We thought that electrostatically charged walls would be beneficial, but this introduced a new problem,” explains Higuchi, “the overall structure must be electrically neutral and the counter-ions required to achieve this occupy the pores of the PCP meaning that they are blocked to guest molecules.”

Higuchi and colleagues’ PCP is based on the coordination of zinc ions with a zwitterionic ligand, which is electrically neutral, but carries separated positive and negative charges. They showed that guest molecules of methanol adsorb more strongly than a similar PCP made with uncharged ligands. It can also adsorb more guest molecules because the pores are not blocked by counter-ions.

The zwitterionic ligand used in the new material described by Higuchi and his colleagues means that the pore walls are highly charged but additional counter-ions are not required. They have also shown that the material adsorbs methanol more strongly than a similar PCP with uncharged pore walls. “In the future, we plan to investigate how other guest molecules interact with the charged pore surface” says Higuchi. “Ultimately, we hope to see this develop into a material that can be made on an industrial scale.”

The corresponding author for this highlight is based at the Spatial Order Research Team, RIKEN SPring-8 Center.

1. Higuchi, M., Tanaka, D., Horike, S., Sakamoto, H., Nakamura, K.,Takashima, Y., Hijikata, Y., Yanai, N., Kim, J., Kato, K. et al. Porous coordination polymer with pyridinium cationic surface, [Zn2(tpa)2(cpb)]. Journal of the American Chemical Society 131, 10336–10337 (2009).

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6052
http://www.researchsea.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>