Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The popular insect repellent deet is neurotoxic

06.08.2009
The active ingredient in many insect repellents, deet, has been found to be toxic to the central nervous system. Researchers writing in the open access journal BMC Biology say that more investigations are urgently needed to confirm or dismiss any potential neurotoxicity to humans, especially when deet-based repellents are used in combination with other neurotoxic insecticides.

Vincent Corbel from the Institut de Recherche pour le Développement in Montpellier, and Bruno Lapied from the University of Angers, France, led a team of researchers who investigated the mode of action and toxicity of deet (N,N-Diethyl-3-methylbenzamide).

Corbel said, "We've found that deet is not simply a behavior-modifying chemical but also inhibits the activity of a key central nervous system enzyme, acetycholinesterase, in both insects and mammals".

Discovered in 1953, deet is still the most common ingredient in insect repellent preparations. It is effective against a broad spectrum of medically important pests, including mosquitoes. Despite its widespread use, controversies remain concerning both the identification of its target sites at the molecular level and its mechanism of action in insects. In a series of experiments, Corbel and his colleagues found that deet inhibits the acetylcholinesterase enzyme – the same mode of action used by organophosphate and carbamate insecticides.

These insecticides are often used in combination with deet, and the researchers also found that deet interacts with carbamate insecticides to increase their toxicity. Corbel concludes, "These findings question the safety of deet, particularly in combination with other chemicals, and they highlight the importance of a multidisciplinary approach to the development of safer insect repellents for use in public health".

1. Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet
Vincent Corbel, Maria Stankiewicz, Cedric Pennetier, Didier Fournier, Jure Stojan, Emmanuelle Girard, Mitko Dimitrov, Jordi Molgo, Jean Marc Hougard and Bruno Lapied

BMC Biology (in press)

2. BMC Biology - the flagship biology journal of the BMC series - publishes research and methodology articles of special importance and broad interest in any area of biology and biomedical sciences. BMC Biology (ISSN 1741-7007) is covered by PubMed, MEDLINE, BIOSIS, CAS, Scopus, EMBASE, Zoological Record, Thomson Reuters (ISI) and Google Scholar.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Graeme Baldwin | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>