Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymorphic purity

09.10.2014

Surface chemistry controls the selective nucleation of crystal polymorphs of a pharmaceutical drug

Reliable batch-to-batch formation is crucial for crystalline, active pharmaceutical ingredients as two different polymorphs of the same drug may function very differently in the body. Sendhil Poornachary from the A*STAR Institute of Chemical and Engineering Sciences and colleagues now report that the surface chemistry of modified glass substrates can influence the nucleation and formation of specific polymorphs of the drug, carbamazepine, within a certain concentration range of supersaturated solutions1.


Two crystal polymorphs of the drug, carbamazepine. The tetrahedral-shaped crystals are a more energetically stable form III (top) and the needle-shaped crystals correspond to the metastable form II (bottom).

© 2014 A*STAR Institute of Chemical and Engineering Sciences

The isolation of a specific polymorph is usually achieved by controlling homogeneous crystal nucleation. However, heterogeneous nucleation — which relies on the presence of a nucleating surface — is more ‘thermodynamically favorable’, meaning less energy is required. The most common heterogeneous method is to add seed crystals to a solution, but problems such as inconsistencies in seed crystal properties and cross-nucleation between crystal polymorphs may result in unwanted polymorphs.

Poornachary and team show that modified glass surfaces can selectively nucleate two different polymorphic forms of carbamazepine, an anticonvulsant and mood-stabilizing drug. “This concept of template-induced crystallization shows promise for improving batch-to-batch reproducibility with respect to the crystal form obtained,” says Poornachary.

The researchers produced cyano-, mercapto- and fluoro-functionalized glass vials by altering the interior surface using a silanization method, and then observed crystallization of the drug from supersaturated ethanol solutions. The two polymorphs were easily distinguished; either needle-shaped crystals corresponding to the metastable form II or tetrahedral-shaped crystals of the more energetically stable form III (see image).

The researchers found that at an initial drug concentration of 60 milligrams per milliliter, the metastable form II crystals were preferentially formed on the cyano-surface with no evidence of the crystals transforming to the more stable polymorph even after 24 hours. The mercapto- and fluoro-surfaces, however, preferentially nucleated form III with a small amount of metastable form II. In control vials, both polymorphs crystallized in tandem and transformed to the stable form within 24 hours. The time taken for the first crystals to appear was similar for all three modified surfaces, and significantly faster than in the control vials.

“We plan to improve our fundamental understanding of this template-induced crystallization process through molecular modeling and simulation,” says Poornachary.

The researchers envisage that better knowledge of the molecular packing arrangements in the crystal polymorphs — along with an enhanced understanding of crystal nucleation — may enable the design of template substrates with specific chemistries, eventually improving polymorphic selectivity for a variety of active pharmaceutical ingredients.

“We are also exploring scale-up of the template-induced crystallization approach using functionalized seed crystals and template particles,” added Poornachary. 

 The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences 

Reference

  1. Parambil, J. V., Poornachary, S. K., Tan, R. B. H. & Heng, J. Y. Y. Template-induced polymorphic selectivity: The effects of surface chemistry and solute concentration on carbamazepine crystallisation. CrystEngComm 16, 4927–4930 (2014). | article

A*STAR Research | Research SEA News
Further information:
http://www.research.a-star.edu.sg/research/7052
http://www.researchsea.com

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>