Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymer Ribbons for Better Healing

26.07.2013
Freiburg researchers develop hydrogels for tissue regeneration that can be fine-tuned to fit any body part

A new kind of gel that promotes the proper organization of human cells was developed by Prof. Prasad Shastri of the Institute of Macromolecular Chemistry and BIOSS Centre for Biological Signalling Studies Excellence Cluster at the University of Freiburg and BIOSS Centre for Biological Signalling Studies graduate students Aurelien Forget and Jon Christensen in collaboration with Dr. Steffen L¨¹deke of the Institute for Pharmaceutical Sciences.



3-D organization and branching of human endothelial cells into vascular trees in carboxylated agarose gels
© Aurelien Forget, Prasad Shastri

These hydrogels made of agarose, a polymer of sugar molecules derived from sea algae, mimic many aspects of the environment of cells in the human body. They can serve as a scaffold for cells to organize in tissues. In the cover article of the Proceedings of the National Academy of Sciences Prof. Shastri and co-workers show how by applying these hydrogels they could grow blood vessel structures from cells in an unparalleled way. These gels could be used in the future to help damaged tissue heal faster.

The cells environment in the body is composed of collagen and polymers of sugars. It provides mechanical signals to the cells, necessary for their survival and proper organization into a tissue, and hence essential for healing. A gel can mimic this scaffold. However it has to precisely reproduce the molecular matrix outside the cell in its physical properties. Those properties, like the matrices stiffness, vary in the body depending on the tissue.

The team of Prof. Shastri modified agarose gels by adding a carboxylic acid residue to the molecular structure of the polymer to optimally fit the cells environment. Hydrogels form when polymer chains that can dissolve in water are crosslinked. In an agarose gel the sugar chains organize into a spring-like structure. By adding a carboxylic acid to this backbone, the polymers form ribbon-like structures ¨C this allows for the stiffness of the gel to be tuned to adapt the scaffold to every part of the human body.

To demonstrate the versatility of the gel the researchers manipulated endothelial cells that make up vascular tissue to organize into blood vessels outside the body. By combining the appropriate biological molecules found in a developing embryo, they identified a single condition that encourages endothelial cells to form large blood vessel-like structures, several hundred micrometers in height. This discovery has implications in treating damage to heart and muscle tissue.

Prof. Shastri says ¡°it is really remarkable that the organization of the endothelial cells into these free standing vascular lumens occurs within our gels without the need for support cells¡±. It has been long thought the formation of large vessel-like structures requires additional cells called mural support cells, which provide a platform for the endothelial cells to attach and organize.

¡°We were surprised to find that the endothelial cells underwent a specific transformation called apical-basal polarization¡±, adds Prof. Shastri. It turns out that such polarization is necessary for the development of blood vessels and occurs naturally in a developing embryo. The ability to induce this polarization in cells in three-dimensional cultures in a synthetic polymer environment is a unique feature of the new gel.

Original publication:
Aurelien Forget, Jon Christensen, Steffen L¨¹deke, Esther Kohlera, Simon Tobias, Maziar Matloubi, Ralf Thomann, and V. Prasad Shastri. (2013) Polysaccharide hydrogels with tunable stiffness and provasculogenic properties via ¦Á-helix to ¦Â-sheet switch in secondary structure. Proc. Natl. Acad. Sci. USA Vol.110, no 32, doi: 10.1073/pnas.1222880110
Contact:
Prof. Dr. V. Prasad Shastri
Institute of Macromolecular Chemistry and BIOSS Centre for Biological Signalling
University of Freiburg
Phone: 0761/203- 6268
E-Mail: prasad.shastrI@makro.uni-freiburg.de

| University of Freiburg
Further information:
http://www.uni-freiburg.de

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>