Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymer chemistry: A pinch of copper proves invaluable

22.11.2012
A novel approach produces dual-function molecules that enhance a widely used chemical reaction while reducing harmful by-products

Production of biocompatible and super-absorbent materials may become easier, thanks to Anbanandam Parthiban and co-workers at the A*STAR Institute of Chemical and Engineering Sciences.


Acrylic acid-based polymers and co-polymers (pictured) can now be synthesized using free radical chemistry, thanks to new ligand–initiator type molecules.



Copyright : 2012 A*STAR Institute of Chemical and Engineering Sciences

Using a modification to the high-precision technique known as atom transfer radical polymerization (ATRP), which links molecules into long chains, the researchers have developed new compounds that can directly polymerize acidic vinyl monomers, such as acrylic acid. Acrylic acid polymers are water-absorbing materials widely used in diapers and as emulsifying agents for pharmaceuticals and cosmetics.

Previous attempts to use ATRP with polar vinyl monomers, including acrylic acid, were unsuccessful, a failure that some chemists attributed to catalyst ‘poisoning’ by carboxylic acids. Parthiban and his team’s compounds resolve this problem by binding to the catalyst while simultaneously initiating the radical polymerization process. This process prevents poisoning and dramatically reduces metallic waste.

Despite ATRP’s inability to directly produce acrylic acid polymers, it is used in laboratories worldwide: it allows researchers to assemble complex polymers in a step-by-step fashion that gives enormous control over product architectures. The key is using a catalyst that can readily switch between two oxidation states, such as a copper salt, explains Parthiban. The copper catalyst first interacts with an ATRP initiator molecule to activate organic free radicals and an oxidized metal complex. The free radicals then quickly polymerize target monomers, while the metal complex undergoes equilibrium with a dormant, lower oxidation state. With appropriate reaction conditions, chemists can then restart polymerization with new monomers.

Parthiban and co-workers addressed ATRP’s limitation by developing ‘unimolecular ligand–initiator systems’ (ULIS), a series of branched molecules containing multiple binding sites for copper atoms, as well as halogens for activating free radical species. In this approach, the ULIS molecules become part of the polymer chain during the active–dormant cycles instead of remaining isolated. The researchers envisaged that this interconnection would suppress the acidic side-reactions that lead to catalyst poisoning.

Experiments by the researchers proved their theories correct: they could efficiently polymerize acrylic acid and other vinyl monomers using ULIS-promoted ATRP (see image). Surprisingly, they found that these reactions could be achieved using less than 100 parts-per-million concentrations of copper catalyst, a quantity comparable to residues left in conventional ATRP purified polymers.

Parthiban notes that although the ULIS ligands are part of the polymer chain and might be expected to produce high amounts of metal waste, the homogenous nature of intramolecular-based free radical polymerization allows less metal to be used — an important consequence for sustainable chemistry efforts.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences

Journal information

Jana, S., Parthiban, A. & Choo, F. M. Unimolecular ligand–initiator dual functional systems (ULIS) for low copper ATRP of vinyl monomers including acrylic/methacrylic acids. Chemical Communications 48, 4256–4258 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>