Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Polymer chemistry: A pinch of copper proves invaluable

A novel approach produces dual-function molecules that enhance a widely used chemical reaction while reducing harmful by-products

Production of biocompatible and super-absorbent materials may become easier, thanks to Anbanandam Parthiban and co-workers at the A*STAR Institute of Chemical and Engineering Sciences.

Acrylic acid-based polymers and co-polymers (pictured) can now be synthesized using free radical chemistry, thanks to new ligand–initiator type molecules.

Copyright : 2012 A*STAR Institute of Chemical and Engineering Sciences

Using a modification to the high-precision technique known as atom transfer radical polymerization (ATRP), which links molecules into long chains, the researchers have developed new compounds that can directly polymerize acidic vinyl monomers, such as acrylic acid. Acrylic acid polymers are water-absorbing materials widely used in diapers and as emulsifying agents for pharmaceuticals and cosmetics.

Previous attempts to use ATRP with polar vinyl monomers, including acrylic acid, were unsuccessful, a failure that some chemists attributed to catalyst ‘poisoning’ by carboxylic acids. Parthiban and his team’s compounds resolve this problem by binding to the catalyst while simultaneously initiating the radical polymerization process. This process prevents poisoning and dramatically reduces metallic waste.

Despite ATRP’s inability to directly produce acrylic acid polymers, it is used in laboratories worldwide: it allows researchers to assemble complex polymers in a step-by-step fashion that gives enormous control over product architectures. The key is using a catalyst that can readily switch between two oxidation states, such as a copper salt, explains Parthiban. The copper catalyst first interacts with an ATRP initiator molecule to activate organic free radicals and an oxidized metal complex. The free radicals then quickly polymerize target monomers, while the metal complex undergoes equilibrium with a dormant, lower oxidation state. With appropriate reaction conditions, chemists can then restart polymerization with new monomers.

Parthiban and co-workers addressed ATRP’s limitation by developing ‘unimolecular ligand–initiator systems’ (ULIS), a series of branched molecules containing multiple binding sites for copper atoms, as well as halogens for activating free radical species. In this approach, the ULIS molecules become part of the polymer chain during the active–dormant cycles instead of remaining isolated. The researchers envisaged that this interconnection would suppress the acidic side-reactions that lead to catalyst poisoning.

Experiments by the researchers proved their theories correct: they could efficiently polymerize acrylic acid and other vinyl monomers using ULIS-promoted ATRP (see image). Surprisingly, they found that these reactions could be achieved using less than 100 parts-per-million concentrations of copper catalyst, a quantity comparable to residues left in conventional ATRP purified polymers.

Parthiban notes that although the ULIS ligands are part of the polymer chain and might be expected to produce high amounts of metal waste, the homogenous nature of intramolecular-based free radical polymerization allows less metal to be used — an important consequence for sustainable chemistry efforts.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences

Journal information

Jana, S., Parthiban, A. & Choo, F. M. Unimolecular ligand–initiator dual functional systems (ULIS) for low copper ATRP of vinyl monomers including acrylic/methacrylic acids. Chemical Communications 48, 4256–4258 (2012).

A*STAR Research | Research asia research news
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>