Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polyester clothes stink after exercise; cotton, not so much

04.09.2014

Polyester clothes smell worse than cotton, following intensive exercise by their wearers, because bacteria that cause odor grow better on polyester, according to research published ahead of print in the journal Applied and Environmental Microbiology.

In the study, the investigators collected t-shirts from 26 healthy individuals following an intensive, hour-long bicycle spinning session, and incubated the shirts for 28 hours before having them inspected by a trained odor panel. The researchers also investigated the taxonomy of the bacteria on the shirts, and in the axillaries.

Freshly secreted sweat has little odor, because the long-chain fatty acids the axillaries secrete are too big to be volatile, says first author, Chris Callewaert of Ghent University, Belgium. Bacteria break these, as well as hormones and sulfur compounds, down to waftable sized, odoriferous molecules.

On the clothes, the main culprit bacteria are micrococci, says Callewaert. "They are known for their enzymatic potential to transform long-chain fatty acids, hormones, and amino acids into smaller—volatile—compounds, which have a typical malodor."

Staphylococci, which inhabit both axillary skin and adjacent textiles (the latter with much less diversity), create a normal, non-malodorous body odor, he says.

"The micrococci are able to grow better on polyester," says Callewaert. He is currently investigating exactly why polyester encourages their growth, and suspects it has to do with the nature of its surfaces.

Corynebacteria are the main causes of bad odors in the armpits, but these anaerobes fail to grow on textiles, says Callewaert.

The impetus for this research is the suffering caused by unpleasant body odor (BO), says Callewaert, who has been consulted by more than 200 patients with this problem, and who runs the website, drarmpit.com.

"BO is taboo, and its prevalence is greatly underestimated," he says. "There is little these people can do to help themselves. Some of them are too psychologically distressed to talk to strangers, or even to leave the house, afraid of what people might think of their smell."

Wearing cotton clothes will reduce the problem somewhat, says Callewaert. But his ultimate objective is to solve the problem of body odor, by transplanting microbes from non-malodorous relatives to those afflicted. (Early results are promising, he says.)

More generally, Callewaert advises people with smelly armpits to avoid overusing antiperspirants, which he says can encourage enrichment of the odor-causing corynebacteria in the axillae. "That is what I have heard from people with BO—the more they use it, the worse it eventually got," he says. But deodorants did not worsen the problem.

###

The manuscript can be found online at http://bit.ly/asmtip0914a. The final version of the article is scheduled for the November 2014 issue of Applied and Environmental Microbiology.

Applied and Environmental Microbiology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | Eurek Alert!
Further information:
http://www.asmusa.org

Further reports about: ASM Environmental Polyester acids bacteria bicycle compounds cotton exercise hormones skin sulfur textiles

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>