Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From pollution to solution

06.12.2010
‘Green’ catalysts transform carbon dioxide gas into valuable building blocks for organic synthesis

Chemists are helping to reduce heat-trapping carbon dioxide (CO2) emissions, which are a global concern. For example, they are devising new catalytic systems that would enable waste CO2 to be recycled as a non-toxic and practically free source of carbon for organic synthetic reactions. However, current CO2 conversion techniques require expensive metal catalysts or drawn-out procedures.

Now, Zhaomin Hou and colleagues from the RIKEN Advanced Science Institute in Wako have found a way to insert CO2 directly into the framework of aromatic molecules, turning them into carboxylic acid derivatives that are widely used as pharmaceuticals, agrichemicals, and dyes1. Importantly, this transformation can be achieved economically and with negligible environmental impact, thanks to a low cost copper complex bearing an organic ligand.

N-heterocyclic carbenes (NHCs) are molecules with near metal-like reactivity because of an electron-deficient carbon center. For the past two decades, scientists have used NHCs as organic replacements for metal catalysts and as ‘spectator’ ligands that attach to metal centers and influence their catalytic behavior. Hou and colleagues recently discovered that adding NHCs to copper, one of the most abundant metals in nature, created a complex that catalyzed CO2 addition to boron esters2—a trick the team hoped to repeat with aromatic hydrocarbons.

The most efficient way to incorporate CO2 into benzene-like molecules is by replacing one of the carbon–hydrogen (C–H) bonds on the outer ring; unfortunately, these bonds are notoriously unreactive. To overcome this problem, the researchers turned to benzoxazole: this double-ringed aromatic compound has a C–H bond situated between nitrogen and oxygen atoms, making it easier to chemically activate this position.

With just a pinch of the NHC–copper catalyst complex, the team found they could convert a mixture of CO2 and several different benzoxazole-based molecules into solid carboxylic acids and esters in excellent yields (Fig. 1). Carefully characterizing the crystal structures of several intermediate compounds revealed that CO2 inserted in between a copper–carbon bond formed at the benzoxazole C–H site, followed by a dissociation step that regenerated the catalyst.

According to Hou, the NHC ligand was essential in enabling CO2 capture. “The electron-donating ability of NHC could make the C–H activation and CO2 insertion steps easier, while its steric bulk brings stability to the active catalyst species,” he notes. The researchers now hope to extend this technique to less reactive C–H bonds by fine-tuning the catalyst complex and optimizing reaction conditions.

The corresponding author for this highlight is based at the Organometallic Chemistry Laboratory, RIKEN Advanced Science Institute

Journal information
1. Zhang, L., Cheng, J., Ohishi, T. & Hou, Z. Copper-catalyzed direct carboxylation of C–H bonds with carbon dioxide. Angewandte Chemie International Edition 49, 8670–8673 (2010). article

2. Ohishi, T., Nishiura, M. & Hou, Z. Carboxylation of organoboronic esters catalyzed by N-heterocyclic carbene copper(I) complexes. Angewandte Chemie International Edition 47, 5792–5795 (2008).

gro-pr | Research asia research news
Further information:
http://www.researchsea.com/html/article.php/eml/1/aid/5677/cid/1

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>