Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From pollution to solution

06.12.2010
‘Green’ catalysts transform carbon dioxide gas into valuable building blocks for organic synthesis

Chemists are helping to reduce heat-trapping carbon dioxide (CO2) emissions, which are a global concern. For example, they are devising new catalytic systems that would enable waste CO2 to be recycled as a non-toxic and practically free source of carbon for organic synthetic reactions. However, current CO2 conversion techniques require expensive metal catalysts or drawn-out procedures.

Now, Zhaomin Hou and colleagues from the RIKEN Advanced Science Institute in Wako have found a way to insert CO2 directly into the framework of aromatic molecules, turning them into carboxylic acid derivatives that are widely used as pharmaceuticals, agrichemicals, and dyes1. Importantly, this transformation can be achieved economically and with negligible environmental impact, thanks to a low cost copper complex bearing an organic ligand.

N-heterocyclic carbenes (NHCs) are molecules with near metal-like reactivity because of an electron-deficient carbon center. For the past two decades, scientists have used NHCs as organic replacements for metal catalysts and as ‘spectator’ ligands that attach to metal centers and influence their catalytic behavior. Hou and colleagues recently discovered that adding NHCs to copper, one of the most abundant metals in nature, created a complex that catalyzed CO2 addition to boron esters2—a trick the team hoped to repeat with aromatic hydrocarbons.

The most efficient way to incorporate CO2 into benzene-like molecules is by replacing one of the carbon–hydrogen (C–H) bonds on the outer ring; unfortunately, these bonds are notoriously unreactive. To overcome this problem, the researchers turned to benzoxazole: this double-ringed aromatic compound has a C–H bond situated between nitrogen and oxygen atoms, making it easier to chemically activate this position.

With just a pinch of the NHC–copper catalyst complex, the team found they could convert a mixture of CO2 and several different benzoxazole-based molecules into solid carboxylic acids and esters in excellent yields (Fig. 1). Carefully characterizing the crystal structures of several intermediate compounds revealed that CO2 inserted in between a copper–carbon bond formed at the benzoxazole C–H site, followed by a dissociation step that regenerated the catalyst.

According to Hou, the NHC ligand was essential in enabling CO2 capture. “The electron-donating ability of NHC could make the C–H activation and CO2 insertion steps easier, while its steric bulk brings stability to the active catalyst species,” he notes. The researchers now hope to extend this technique to less reactive C–H bonds by fine-tuning the catalyst complex and optimizing reaction conditions.

The corresponding author for this highlight is based at the Organometallic Chemistry Laboratory, RIKEN Advanced Science Institute

Journal information
1. Zhang, L., Cheng, J., Ohishi, T. & Hou, Z. Copper-catalyzed direct carboxylation of C–H bonds with carbon dioxide. Angewandte Chemie International Edition 49, 8670–8673 (2010). article

2. Ohishi, T., Nishiura, M. & Hou, Z. Carboxylation of organoboronic esters catalyzed by N-heterocyclic carbene copper(I) complexes. Angewandte Chemie International Edition 47, 5792–5795 (2008).

gro-pr | Research asia research news
Further information:
http://www.researchsea.com/html/article.php/eml/1/aid/5677/cid/1

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>