Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From pollution to solution

06.12.2010
‘Green’ catalysts transform carbon dioxide gas into valuable building blocks for organic synthesis

Chemists are helping to reduce heat-trapping carbon dioxide (CO2) emissions, which are a global concern. For example, they are devising new catalytic systems that would enable waste CO2 to be recycled as a non-toxic and practically free source of carbon for organic synthetic reactions. However, current CO2 conversion techniques require expensive metal catalysts or drawn-out procedures.

Now, Zhaomin Hou and colleagues from the RIKEN Advanced Science Institute in Wako have found a way to insert CO2 directly into the framework of aromatic molecules, turning them into carboxylic acid derivatives that are widely used as pharmaceuticals, agrichemicals, and dyes1. Importantly, this transformation can be achieved economically and with negligible environmental impact, thanks to a low cost copper complex bearing an organic ligand.

N-heterocyclic carbenes (NHCs) are molecules with near metal-like reactivity because of an electron-deficient carbon center. For the past two decades, scientists have used NHCs as organic replacements for metal catalysts and as ‘spectator’ ligands that attach to metal centers and influence their catalytic behavior. Hou and colleagues recently discovered that adding NHCs to copper, one of the most abundant metals in nature, created a complex that catalyzed CO2 addition to boron esters2—a trick the team hoped to repeat with aromatic hydrocarbons.

The most efficient way to incorporate CO2 into benzene-like molecules is by replacing one of the carbon–hydrogen (C–H) bonds on the outer ring; unfortunately, these bonds are notoriously unreactive. To overcome this problem, the researchers turned to benzoxazole: this double-ringed aromatic compound has a C–H bond situated between nitrogen and oxygen atoms, making it easier to chemically activate this position.

With just a pinch of the NHC–copper catalyst complex, the team found they could convert a mixture of CO2 and several different benzoxazole-based molecules into solid carboxylic acids and esters in excellent yields (Fig. 1). Carefully characterizing the crystal structures of several intermediate compounds revealed that CO2 inserted in between a copper–carbon bond formed at the benzoxazole C–H site, followed by a dissociation step that regenerated the catalyst.

According to Hou, the NHC ligand was essential in enabling CO2 capture. “The electron-donating ability of NHC could make the C–H activation and CO2 insertion steps easier, while its steric bulk brings stability to the active catalyst species,” he notes. The researchers now hope to extend this technique to less reactive C–H bonds by fine-tuning the catalyst complex and optimizing reaction conditions.

The corresponding author for this highlight is based at the Organometallic Chemistry Laboratory, RIKEN Advanced Science Institute

Journal information
1. Zhang, L., Cheng, J., Ohishi, T. & Hou, Z. Copper-catalyzed direct carboxylation of C–H bonds with carbon dioxide. Angewandte Chemie International Edition 49, 8670–8673 (2010). article

2. Ohishi, T., Nishiura, M. & Hou, Z. Carboxylation of organoboronic esters catalyzed by N-heterocyclic carbene copper(I) complexes. Angewandte Chemie International Edition 47, 5792–5795 (2008).

gro-pr | Research asia research news
Further information:
http://www.researchsea.com/html/article.php/eml/1/aid/5677/cid/1

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>