Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pollen Tube Growth on Camera Illuminates Fertilization

28.01.2010
Studying pollen tubes, University of Massachusetts Amherst plant cell biologist Peter Hepler and colleagues have captured some of the fastest growing tissues known, on camera for the first time, to advance understanding of fertilization processes critical to development of all fruits, nuts, grains, rice, corn, wheat and other crops we depend on for food.

Growing at a rate of around 2 to 3 nanometers per second, or about 50 times faster than animal nerve cells, pollen tube tips are believed to travel near the upper limit of cell growth. Each pollen tube carries two plant sperm through the pistil to fertilize the egg and its food supply, the endosperm. Why the hurry? Because, as Hepler explains, the first pollen tube to reach the egg delivers its DNA to the next generation and wins the natural selection race.

Hepler was inducted as a Fellow of the American Association for the Advancement of Science this month for his contributions as “one of the most influential plant cell biologists, who has continuously and continues to achieve breakthroughs that have guided research directions of numerous plant scientists.”

The current work, a culmination of years of investigation by Hepler and colleagues at UMass Amherst, with others at Long Island University, Worcester Polytechnic University, Aberystwyth University, Wales, UK, and nearby Hampshire College is reported in two recent articles in the journals Plant Cell and Plant Physiology. It was supported by the National Science Foundation.

Using two different imaging methods, fluorescent dye marking and interference optical contrast, in the first study Hepler and colleagues report they can now detect building-block pectins being packaged in vesicles inside the tube, which are then transported by an acto-myosin system—like muscles—toward the tip. There the vesicles fuse with the tip membrane and secrete their contents to build up the new cell wall.

Movies made by Hepler and colleagues reveal that as this new material thickens, it grows top-heavy, like a gathering ocean wave, elongating until it suddenly lurches forward a few micrometers. Growth continues like this in oscillations, or waves, of thickening, buildup and lurching forward until the tube reaches its goal and can deliver the sperm inside to its destination. The plant physiologists often work with lily or tobacco pollen tubes to watch their growing tips “dash” for the egg.

“We’re gradually piecing together how this works and it’s very exciting because this oscillatory growth pattern in pollen tube tips has never been observed directly before. It’s now possible for us to understand new details about secretion of new cell wall materials from the internal vesicles,” Hepler observes.

Each of the two observation methods they use has its own strengths. For example, interference contrast allows the researchers to see the edges of the tube tip as it grows, while the fluorescent-labeled pectin enzyme and propidium iodide method illuminates the thickest tube parts as the brightest spots. The fluorescently labeled pectin enzyme, pectin methyl esterase, is particularly interesting because it is essential for regulating pectin structure and thus cell wall strength.

Overall, success in observing the minutest details of the growing tip’s cell wall weakening and thickening in predictable oscillations serves to revive interest in the role of turgor pressure, a biophysical property of plants examined in the 1960s by Jim Lockhart, also a UMass Amherst plant physiologist. The Lockhart equation established the relationship between the restraint or yielding of the cell wall against the outward forces of turgor pressure. New studies by Hepler and colleagues provide support for the idea that the pectin deposits are forced into the wall matrix by turgor pressure. Through this process, called intussusception, the newly inserted pectin molecules weaken the existing wall structure and allow the tip to extend and the pollen tube to grow.

As Hepler explains his team’s breakthrough, “We think our observations support the idea that cell wall yielding depends upon insertion of new building materials, the pectins, into the existing matrix, which is enough to weaken existing cell wall bonds and allow it to stretch but not break. It’s like a controlled dam break until the tip reaches the egg. In other words, it’s going to break and is designed to break, but not too soon.”

Their second recent study, led by post-doctoral fellow Caleb Rounds, explored the energy requirements for oscillatory pollen tube growth, which is not limited to using familiar oxidative metabolism. Rather, Rounds showed, by treating pollen tubes with growth inhibitors including cyanide, oligomycin and antimycin-A, that pollen tubes can withstand such toxins and after an adjustment period will begin to grow again but at a slower rate while still exhibiting growth oscillations described above.

Further the inhibited pollen tubes begin producing ethanol. Hepler says, “In brief, they have shifted from oxidative phosphorylation to aerobic fermentation as a way, albeit inefficient, to produce energy for growth.”

| Newswise Science News
Further information:
http://www.umass.edu/newsoffice

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>