Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pollen Tube Growth on Camera Illuminates Fertilization

28.01.2010
Studying pollen tubes, University of Massachusetts Amherst plant cell biologist Peter Hepler and colleagues have captured some of the fastest growing tissues known, on camera for the first time, to advance understanding of fertilization processes critical to development of all fruits, nuts, grains, rice, corn, wheat and other crops we depend on for food.

Growing at a rate of around 2 to 3 nanometers per second, or about 50 times faster than animal nerve cells, pollen tube tips are believed to travel near the upper limit of cell growth. Each pollen tube carries two plant sperm through the pistil to fertilize the egg and its food supply, the endosperm. Why the hurry? Because, as Hepler explains, the first pollen tube to reach the egg delivers its DNA to the next generation and wins the natural selection race.

Hepler was inducted as a Fellow of the American Association for the Advancement of Science this month for his contributions as “one of the most influential plant cell biologists, who has continuously and continues to achieve breakthroughs that have guided research directions of numerous plant scientists.”

The current work, a culmination of years of investigation by Hepler and colleagues at UMass Amherst, with others at Long Island University, Worcester Polytechnic University, Aberystwyth University, Wales, UK, and nearby Hampshire College is reported in two recent articles in the journals Plant Cell and Plant Physiology. It was supported by the National Science Foundation.

Using two different imaging methods, fluorescent dye marking and interference optical contrast, in the first study Hepler and colleagues report they can now detect building-block pectins being packaged in vesicles inside the tube, which are then transported by an acto-myosin system—like muscles—toward the tip. There the vesicles fuse with the tip membrane and secrete their contents to build up the new cell wall.

Movies made by Hepler and colleagues reveal that as this new material thickens, it grows top-heavy, like a gathering ocean wave, elongating until it suddenly lurches forward a few micrometers. Growth continues like this in oscillations, or waves, of thickening, buildup and lurching forward until the tube reaches its goal and can deliver the sperm inside to its destination. The plant physiologists often work with lily or tobacco pollen tubes to watch their growing tips “dash” for the egg.

“We’re gradually piecing together how this works and it’s very exciting because this oscillatory growth pattern in pollen tube tips has never been observed directly before. It’s now possible for us to understand new details about secretion of new cell wall materials from the internal vesicles,” Hepler observes.

Each of the two observation methods they use has its own strengths. For example, interference contrast allows the researchers to see the edges of the tube tip as it grows, while the fluorescent-labeled pectin enzyme and propidium iodide method illuminates the thickest tube parts as the brightest spots. The fluorescently labeled pectin enzyme, pectin methyl esterase, is particularly interesting because it is essential for regulating pectin structure and thus cell wall strength.

Overall, success in observing the minutest details of the growing tip’s cell wall weakening and thickening in predictable oscillations serves to revive interest in the role of turgor pressure, a biophysical property of plants examined in the 1960s by Jim Lockhart, also a UMass Amherst plant physiologist. The Lockhart equation established the relationship between the restraint or yielding of the cell wall against the outward forces of turgor pressure. New studies by Hepler and colleagues provide support for the idea that the pectin deposits are forced into the wall matrix by turgor pressure. Through this process, called intussusception, the newly inserted pectin molecules weaken the existing wall structure and allow the tip to extend and the pollen tube to grow.

As Hepler explains his team’s breakthrough, “We think our observations support the idea that cell wall yielding depends upon insertion of new building materials, the pectins, into the existing matrix, which is enough to weaken existing cell wall bonds and allow it to stretch but not break. It’s like a controlled dam break until the tip reaches the egg. In other words, it’s going to break and is designed to break, but not too soon.”

Their second recent study, led by post-doctoral fellow Caleb Rounds, explored the energy requirements for oscillatory pollen tube growth, which is not limited to using familiar oxidative metabolism. Rather, Rounds showed, by treating pollen tubes with growth inhibitors including cyanide, oligomycin and antimycin-A, that pollen tubes can withstand such toxins and after an adjustment period will begin to grow again but at a slower rate while still exhibiting growth oscillations described above.

Further the inhibited pollen tubes begin producing ethanol. Hepler says, “In brief, they have shifted from oxidative phosphorylation to aerobic fermentation as a way, albeit inefficient, to produce energy for growth.”

| Newswise Science News
Further information:
http://www.umass.edu/newsoffice

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>