Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polar growth at the bacterial scale reveals potential new targets for antibiotic therapy

18.01.2012
An international team of microbiologists led by Indiana University researchers has identified a new bacterial growth process -- one that occurs at a single end or pole of the cell instead of uniform, dispersed growth along the long axis of the cell -- that could have implications in the development of new antibacterial strategies.

Outer membrane proteins of an Agrobacterium tumefaciens cell were labeled in red, with images taken every 50 minutes as the cell grew. In panels three and four it is clear that the cell on the left (red) has kept all the labeled proteins, whereas the other cell has all new surface proteins.

Based on past detailed studies of rod-shaped bacteria such as Escherichia coli and Bacillus subtilis, it has been assumed that most bacteria grow by binary fission, a dispersed mode of growth involving insertion of new cell wall material uniformly along the long axis of the cell. Growth requires breaking the cell wall at numerous places along the cylinder to allow insertion of new cell wall material, enabling uniform elongation of the cell, with the process culminated by cleavage at the mid-point of the cell to create two symmetric new cells.

The new research published today, Jan. 17, in Proceedings of the National Academy of Sciences reports on the surprising discovery that cell growth in a large group of rod-shaped bacteria occurs by insertion of new cell wall material only at a single end, or pole, of the cell rather than by the dispersed mode of growth. The cell wall of the progenitor cell remains largely intact, and all of the new cell wall material is partitioned into the new cell.

Polar growth of four bacterial species -- the plant symbiont Sinorhizobium meliloti, the plant pathogen Agrobacterium tumefaciens and the human pathogens Brucella abortus and Ochrobactrum anthropi -- was observed using time-lapse microscopy and transmission electron microscopy. The four related bacteria used in the study are all members of a large and diverse class of bacteria called the Alphaproteobacteria. The results reported suggest that polar growth is broadly distributed among many different bacterial taxa, including groups outside the Alphaproteobacteria.

There could be a number of reasons why polar growth emerged and has remained conserved and persistent in bacteria, the researchers believe. The process may act as an aid in anchoring damaged material to only the aging mother cell; it could serve as a tool for conservation of energy by constraining growth to a single region of the cell; and ensuring that newborn cells are composed of newly synthesized outer membrane proteins may help pathogens avoid detection by host immune systems.

"As a consequence of polar growth, the two bacterial cells are actually markedly different," said lead author Yves Brun, the Clyde Culbertson Professor of Biology in IU Bloomington's College of Arts and Sciences. "One cell contains all of the old cell wall and surface molecules, including those with damage. In contrast, the other cell is composed of newly synthesized, relatively pristine material."

Ensuring that some cells are composed of newly synthesized surface molecules may help bacteria vary their surface composition, and the ability to do so rapidly is thought to be advantageous for adapting to new environments. Since the defense systems of many plant and animal hosts recognize bacterial cell surfaces, rapid modification of the cell surface may allow bacteria like those used in the experiments to evade detection by the host cell's defense systems.

"These findings make it abundantly clear that the widely accepted binary fission model is not a general rule and suggest that polar growth may be broadly distributed," said IU biology professor Clay Fuqua, one of the IU co-authors. "Therefore, future work aimed at understanding the molecular mechanism underlying polar growth should provide attractive targets for the development of new antibacterial strategies."

Understanding the mechanisms of bacterial growth has enabled advances in strategies to limit the proliferation of bacteria that cause disease. Penicillin, for example, targets actively growing cells by directly inhibiting the proteins responsible for the synthesis of the cell wall and that are required for cell growth. New insights into bacterial cell growth have also been utilized to promote growth of certain bacteria used in oil spill remediation and eradicating disease-carrying mosquitoes.

Co-authors with Brun and Fuqua on "Polar growth in the Alphaproteobacterial order Rhizobiales" included IU Department of Biology postdoctoral researchers Pamela J. B. Brown and David T. Kysela; former IU postdoctoral researcher Jinwoo Kim, who is now at Gyeongsang National University, Korea; Miguel A. de Pedro of the Universidad Autonoma de Madrid, Spain; and Charles Van der Henst and Xavier De Bolle, from University of Namur, Belgium.

Researchers from IU received support for this work from the National Institutes of Health, the National Science Foundation, the IU Metabolomics and Cytomics Initiative and the Korean Research Foundation.

For more information or to speak with the researchers, please contact Steve Chaplin, IU Communications, at 812-856-1896 or stjchap@indiana.edu. Tweeting IU science: @IndianaScience

Steve Chaplin | EurekAlert!
Further information:
http://www.iu.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>