Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pliable proteins keep photosynthesis on the light path

13.05.2009
Photosynthesis is a remarkable biological process that supports life on earth. Plants and photosynthetic microbes do so by harvesting light to produce their food, and in the process, also provide vital oxygen for animals and people.

Now, a large, international collaboration between Arizona State University, the University of California San Diego and the University of British Columbia, has come up with a surprising twist to photosynthesis by swapping a key metal necessary for turning sunlight into chemical energy.

The team, which includes: ASU scientists Su Lin, Neal Woodbury, Aaron Tufts and James P. Allen; UBC colleagues J. Thomas Beatty, Paul R. Jaschke, Federico I. Rosell and A. Grant Mauk; Mark Paddock, UCSD; Haiyu Wang, Jilin University, China, described their findings in the May 11 early online edition of the Proceedings of the National Academy of Sciences.

In the heart of every green leaf are pigments called chlorophyll, which not only give most plants their color, but also along with the yellow and orange carotenoid pigments, are key molecules that harvest light across the spectrum.

In all plant chlorophylls, only one particular metal, magnesium, is held tightly within the molecule's center.

During photosynthesis, plants have two photosystems that work in tandem: photosystem I and photosystem II. To peer at the inner workings of photosynthesis, the team used a hardy, well-studied, photosynthetic bacterium called Rhodobacter sphaeroides. An organism similar to this purple bacterium was likely one of the earliest photosynthetic bacteria to evolve. The purple bacteria possess a simplified system similar to photosystem II.

The center stage of photosynthesis is the reaction center, where light energy is funneled into specialized chlorophyll binding proteins. The research team had previously demonstrated that the movement of the reaction center proteins during photosynthesis facilitates the light-driven movement of electrons between molecules in the reaction center, helping the plant or bacteria to harness light energy efficiently even if conditions aren't optimal. Every time the team introduced disruptions into this electron pathway, the proteins were able to compensate by moving and energetically guiding the electrons through their biological circuit.

"One of our research strategies is to introduce mutations into the bacteria and study how these affect the energy conversion efficiency of the reaction center," said Su Lin, PhD, senior researcher at ASU's Department of Chemistry & Biochemistry and Biodesign Institute, and lead author of the study. "Carefully-designed aberrations provide extensive information about the normal mechanism of energy conversion in reaction centers, just like studying a disease clarifies the parameters of health for the involved biochemical pathways and tissues. From this, we can learn a lot about the most basic mechanisms of photosynthesis."

The reactions that convert light to chemical energy happen in a millionth of a millionth of a second, which makes experimental observation extremely challenging. A premier ultrafast laser spectroscopic detection system that Lin has built, with the sponsorship of the National Science Foundation, acts like a high-speed motion picture camera. It splits the light spectrum into infinitesimally discrete slivers, allowing the group to capture vast numbers of ultrafast frames from the components of these exceedingly rapid reactions. These frames are then mathematically assembled, allowing the group to make a figurative 'movie' of the energy transfer events of photosynthesis.

The current research study began when Paul R. Jaschke, a graduate student with professor J. Thomas Beatty in the Department of Microbiology and Immunology at the University of British Columbia, discovered a mutant that replaced the magnesium metal found in the reaction center with zinc.

"We initially thought this reaction center was non-functional," said Beatty. "We were forced to think in new ways to explain the surprising results, which led to some nice insight."

Lin carefully measured the light absorption spectra for the naturally occurring magnesium reaction center and compared it to the mutant reaction center that was replaced with zinc bacteriochlorophylls. She found that, though the zinc-coordinated reaction center is comprised of six bacteriochlorophylls, changing their structure to a configuration similar to that used in plant photosystem I reaction centers, surprisingly, the data from the reaction kinetics and the energy conversion efficiency were almost identical to the magnesium containing reaction center.

"Amazingly, the reaction center still works with essentially the same physical chemical properties as the normal system," said Neal Woodbury, deputy director of the Biodesign Institute. "This was a real puzzle when Su first did these measurements, but she was able to figure out why."

"The electron transfer driving force can be determined by either the properties of the metal cofactors themselves or through their interaction with the protein," said Lin. "In the case of the zinc reaction center, the driving force is regulated through the coordination of the metal."

"Once again, biology shows its resilience so that changes in one area are compensated by changes in others and the protein's ability to dynamically adjust," said Woodbury.

The results may enable researchers to explore a deeper understanding of the structure, function, and evolution of photosynthesis reaction centers in photosystems I and II. Of particular interest, are studies that focus on the interaction between chlorophylls and protein, which differs in naturally occurring reaction center variants. The team may also conduct future experiments to understand the metal substitution limitations of the reaction center and track the protein movements that may be occurring in the reaction center that helps to optimize photosynthesis.

Their results may have long-term practical applications for the development of next-generation solar cells, which could, through biomimicry of photosynthesis, greatly boost the energy efficiency compared with current technology. The robustness of the natural system may offer some useful lessons for engineers trying to improve on current technologies, and bring the costs of solar panels down to the average consumer.

Woodbury has proposed that there might be a way to increase the flexibility of the system used in organic solar cells by incorporating solvents that move on a variety of time scales that could "tune" the molecules to work in a wider variety of conditions.

Joe Caspermeyer | EurekAlert!
Further information:
http://www.asu.edu
http://www.pnas.org_cgi_doi_10.1073_pnas.0812719106

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>