Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plastics from Renewable Raw Materials: Body automatically breaks down implants

Researchers from Graz University of Technology, together with colleagues from the Medical University of Graz, Vienna University of Technology and the University of Natural Resources and Life Sciences, Vienna, have managed to develop absorbable implants to promote bone healing which are broken down by the body.

In this way, painful multiple operations – especially in children – can be avoided in the future. The “BRIC - BioResorbable Implants for Children” project, funded by the Austrian Research Promotion Agency (FFG), was successfully completed at the end of August.

The goal was finally achieved after four years of research. Scientists from Graz University of Technology and their colleagues in Graz and Vienna finally concluded the development stage of the BRIC – Bio Resorbable Implants for Children project. Bioresorbable implants are implants that are resorbed by the body over time. In contrast to traditional implants, such as plates, screws or pins, which have to be surgically removed after a certain time, bioresorbable implants do not have to be surgically removed. The BRICs are to be used in children, who suffer particularly from each surgical intervention.

Detailed work over many years was necessary for the success of this development. The project was co-ordinated by Dr Annelie Weinberg at the Department of Paediatric Surgery in Graz. Apart from the Medical University of Graz, the project consortium on the academic side consisted of two working groups made up by Graz University of Technology, Vienna University of Technology, and even the University of Natural Resources and Life Sciences, Vienna. The participation of partners AT&S and Heraeus demonstrates the great interest shown by industry in the results.

No negative affects on the body

The two Graz University of Technology teams led by Martin Koller, responsible for the biotechnology part, and Franz Stelzer, whose team processed the biopolymers into implants, managed to develop microbial biopolyesters – so-called polyhydroxyalkanoates, known as PHAs, which can be processed into implants. “The production is completely independent of fossil resources, so there are no negative affects on the body. The implant is produced by bacteria and can be absorbed by the human body after it has fulfilled its task,” said Martin Koller. Alternative biopolymers, such as polylactic acid, in contrast to PHAs, lead to a hyperacidity of the organism and bring about chronic inflammation. PHAs, on the other hand, are high-grade materials whose biotechnological production is based on renewable raw materials.

Another advantage of the new implants is that they are more biocompatible than the previously used steel or titanium materials and thus promote the bone healing process. Furthermore, the speed of their breakdown by the body can be controlled by means of the implant’s precise composition. The breakdown of the implant should take place at the same speed as the bone heals.

The materials are in the development stage and their material properties and biodegradation rates are currently being tested.

Dipl.-Ing. Dr.techn. Martin Koller
Institute of Biotechnology and Biochemical Engineering
Tel.: +43 (316) 873 8409
TU Graz - Mitglied der TU Austria

Alice Senarclens de Grancy | Technische Universität Graz
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>