Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastics from Renewable Raw Materials: Body automatically breaks down implants

18.09.2013
Researchers from Graz University of Technology, together with colleagues from the Medical University of Graz, Vienna University of Technology and the University of Natural Resources and Life Sciences, Vienna, have managed to develop absorbable implants to promote bone healing which are broken down by the body.

In this way, painful multiple operations – especially in children – can be avoided in the future. The “BRIC - BioResorbable Implants for Children” project, funded by the Austrian Research Promotion Agency (FFG), was successfully completed at the end of August.

The goal was finally achieved after four years of research. Scientists from Graz University of Technology and their colleagues in Graz and Vienna finally concluded the development stage of the BRIC – Bio Resorbable Implants for Children project. Bioresorbable implants are implants that are resorbed by the body over time. In contrast to traditional implants, such as plates, screws or pins, which have to be surgically removed after a certain time, bioresorbable implants do not have to be surgically removed. The BRICs are to be used in children, who suffer particularly from each surgical intervention.

Detailed work over many years was necessary for the success of this development. The project was co-ordinated by Dr Annelie Weinberg at the Department of Paediatric Surgery in Graz. Apart from the Medical University of Graz, the project consortium on the academic side consisted of two working groups made up by Graz University of Technology, Vienna University of Technology, and even the University of Natural Resources and Life Sciences, Vienna. The participation of partners AT&S and Heraeus demonstrates the great interest shown by industry in the results.

No negative affects on the body

The two Graz University of Technology teams led by Martin Koller, responsible for the biotechnology part, and Franz Stelzer, whose team processed the biopolymers into implants, managed to develop microbial biopolyesters – so-called polyhydroxyalkanoates, known as PHAs, which can be processed into implants. “The production is completely independent of fossil resources, so there are no negative affects on the body. The implant is produced by bacteria and can be absorbed by the human body after it has fulfilled its task,” said Martin Koller. Alternative biopolymers, such as polylactic acid, in contrast to PHAs, lead to a hyperacidity of the organism and bring about chronic inflammation. PHAs, on the other hand, are high-grade materials whose biotechnological production is based on renewable raw materials.

Another advantage of the new implants is that they are more biocompatible than the previously used steel or titanium materials and thus promote the bone healing process. Furthermore, the speed of their breakdown by the body can be controlled by means of the implant’s precise composition. The breakdown of the implant should take place at the same speed as the bone heals.

The materials are in the development stage and their material properties and biodegradation rates are currently being tested.

Enquiries:
Dipl.-Ing. Dr.techn. Martin Koller
Institute of Biotechnology and Biochemical Engineering
E-mail: martin.koller@tugraz.at
Tel.: +43 (316) 873 8409
TU Graz - Mitglied der TU Austria
http://www.tuaustria.at/

Alice Senarclens de Grancy | Technische Universität Graz
Further information:
http://www.tugraz.at

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>