Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plastic Money

Australia’s plastic bills make life difficult for counterfeiters

Counterfeiting money is the “second oldest profession in the world”—a profession that truly took off with the introduction of paper money. In order to spoil things for counterfeiters, Australia introduced the world’s first banknotes made of plastic in 1988.

David H. Solomon at the University of Melbourne was part of an interdisciplinary team of scientists that developed these bills. In an essay in the journal Angewandte Chemie, he and co-author Emma L. Prime trace the technically challenging route to the development of the plastic banknote.

In 1966, Australia converted its currency from the British Pound to the decimal system. The new banknotes distributed by the Reserve Bank of Australia (RBA) were at the time the most counterfeit-proof bills in the world. However, it was less than a year before counterfeiters tried to put the first forged $10 bills into circulation—ingeniously printed on common office paper. The Governor of the RBA, H.C. (Nugget) Coombs, thus initiated a project to secure banknotes against counterfeiters.

Solomon remembers a photographic expert on the commission, who countered nearly every suggestion with the words, “if you can see it, you can photograph it”—meaning that it was always possible to separate the colors of a banknote, produce printing plates, and forge the bills. “Our idea was to develop materials that could not be photographed,” reports Solomon, “which eventually led to the use of clear plastic films as a substrate in place of paper.” A banknote with a transparent window made of a plastic film is a simple but highly effective security feature. The material selected was a polyethylene/polypropylene/polyethylene film. Two or three of these three-layer films were combined in a hot lamination process to attain the required thickness of 80 to 90 µm.

Another security feature is a small picture in the transparent window that is designed to produce a complex diffraction grating through the diffraction and interference of light. To protect the diffraction grating and to achieve the right “feel”, the entire banknote then had to be covered with a clear polyurethane coating. The team was able to develop a production process that put everything together in a single run: lamination, application of white ink, printing the pattern, hot embossing the diffraction grating, application of the clear coat, and cutting. In stringent tests, the sample banknotes proved to be more durable than the paper banknotes in circulation – to such an extent that the higher production costs were easily balanced out.

In 1988, the RBA first introduced a limited number of a special $10 banknote for the Australian bicentennial celebration (see picture). Between 1992 and 1996, the Note Issue Department then replaced all Australian paper banknotes with plastic ones. “Since that time, other countries have adopted our technology,” says Solomon. “In Romania, New Zealand, and Brazil, the counterfeiting rate went down by over 90 % upon introduction of plastic bills.”

Author: David H. Solomon, University of Melbourne (Australia),

Title: Australia's Plastic Banknotes: Fighting Counterfeit Currency

Angewandte Chemie International Edition 2010, 49, No. 21, Permalink to the article:

David H. Solomon | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>