Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Plastic Money

Australia’s plastic bills make life difficult for counterfeiters

Counterfeiting money is the “second oldest profession in the world”—a profession that truly took off with the introduction of paper money. In order to spoil things for counterfeiters, Australia introduced the world’s first banknotes made of plastic in 1988.

David H. Solomon at the University of Melbourne was part of an interdisciplinary team of scientists that developed these bills. In an essay in the journal Angewandte Chemie, he and co-author Emma L. Prime trace the technically challenging route to the development of the plastic banknote.

In 1966, Australia converted its currency from the British Pound to the decimal system. The new banknotes distributed by the Reserve Bank of Australia (RBA) were at the time the most counterfeit-proof bills in the world. However, it was less than a year before counterfeiters tried to put the first forged $10 bills into circulation—ingeniously printed on common office paper. The Governor of the RBA, H.C. (Nugget) Coombs, thus initiated a project to secure banknotes against counterfeiters.

Solomon remembers a photographic expert on the commission, who countered nearly every suggestion with the words, “if you can see it, you can photograph it”—meaning that it was always possible to separate the colors of a banknote, produce printing plates, and forge the bills. “Our idea was to develop materials that could not be photographed,” reports Solomon, “which eventually led to the use of clear plastic films as a substrate in place of paper.” A banknote with a transparent window made of a plastic film is a simple but highly effective security feature. The material selected was a polyethylene/polypropylene/polyethylene film. Two or three of these three-layer films were combined in a hot lamination process to attain the required thickness of 80 to 90 µm.

Another security feature is a small picture in the transparent window that is designed to produce a complex diffraction grating through the diffraction and interference of light. To protect the diffraction grating and to achieve the right “feel”, the entire banknote then had to be covered with a clear polyurethane coating. The team was able to develop a production process that put everything together in a single run: lamination, application of white ink, printing the pattern, hot embossing the diffraction grating, application of the clear coat, and cutting. In stringent tests, the sample banknotes proved to be more durable than the paper banknotes in circulation – to such an extent that the higher production costs were easily balanced out.

In 1988, the RBA first introduced a limited number of a special $10 banknote for the Australian bicentennial celebration (see picture). Between 1992 and 1996, the Note Issue Department then replaced all Australian paper banknotes with plastic ones. “Since that time, other countries have adopted our technology,” says Solomon. “In Romania, New Zealand, and Brazil, the counterfeiting rate went down by over 90 % upon introduction of plastic bills.”

Author: David H. Solomon, University of Melbourne (Australia),

Title: Australia's Plastic Banknotes: Fighting Counterfeit Currency

Angewandte Chemie International Edition 2010, 49, No. 21, Permalink to the article:

David H. Solomon | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>