Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastic Money

08.04.2010
Australia’s plastic bills make life difficult for counterfeiters

Counterfeiting money is the “second oldest profession in the world”—a profession that truly took off with the introduction of paper money. In order to spoil things for counterfeiters, Australia introduced the world’s first banknotes made of plastic in 1988.


David H. Solomon at the University of Melbourne was part of an interdisciplinary team of scientists that developed these bills. In an essay in the journal Angewandte Chemie, he and co-author Emma L. Prime trace the technically challenging route to the development of the plastic banknote.

In 1966, Australia converted its currency from the British Pound to the decimal system. The new banknotes distributed by the Reserve Bank of Australia (RBA) were at the time the most counterfeit-proof bills in the world. However, it was less than a year before counterfeiters tried to put the first forged $10 bills into circulation—ingeniously printed on common office paper. The Governor of the RBA, H.C. (Nugget) Coombs, thus initiated a project to secure banknotes against counterfeiters.

Solomon remembers a photographic expert on the commission, who countered nearly every suggestion with the words, “if you can see it, you can photograph it”—meaning that it was always possible to separate the colors of a banknote, produce printing plates, and forge the bills. “Our idea was to develop materials that could not be photographed,” reports Solomon, “which eventually led to the use of clear plastic films as a substrate in place of paper.” A banknote with a transparent window made of a plastic film is a simple but highly effective security feature. The material selected was a polyethylene/polypropylene/polyethylene film. Two or three of these three-layer films were combined in a hot lamination process to attain the required thickness of 80 to 90 µm.

Another security feature is a small picture in the transparent window that is designed to produce a complex diffraction grating through the diffraction and interference of light. To protect the diffraction grating and to achieve the right “feel”, the entire banknote then had to be covered with a clear polyurethane coating. The team was able to develop a production process that put everything together in a single run: lamination, application of white ink, printing the pattern, hot embossing the diffraction grating, application of the clear coat, and cutting. In stringent tests, the sample banknotes proved to be more durable than the paper banknotes in circulation – to such an extent that the higher production costs were easily balanced out.

In 1988, the RBA first introduced a limited number of a special $10 banknote for the Australian bicentennial celebration (see picture). Between 1992 and 1996, the Note Issue Department then replaced all Australian paper banknotes with plastic ones. “Since that time, other countries have adopted our technology,” says Solomon. “In Romania, New Zealand, and Brazil, the counterfeiting rate went down by over 90 % upon introduction of plastic bills.”

Author: David H. Solomon, University of Melbourne (Australia), http://www.chemeng.unimelb.edu.au/people/staff/solomon.html

Title: Australia's Plastic Banknotes: Fighting Counterfeit Currency

Angewandte Chemie International Edition 2010, 49, No. 21, Permalink to the article: http://dx.doi.org/10.1002/anie.200904538

David H. Solomon | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chemeng.unimelb.edu.au/people/staff/solomon.html

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>