Plasminogen activator inhibitor type-1 — a potential link between heart failure and diabetes

The results, which appear in the March 2009 issue of Experimental Biology and Medicine, implicate PAI-1 overexpression, known to accompany insulin resistance and type 2 diabetes, as a factor contributing to the high incidence of heart failure after myocardial infarction in people with diabetes.

The research team, Dr. A.K.M. Tarikuz Zaman, a research associate, Mr. Christopher J. French, medical and graduate student, Dr. David J. Schneider, Professor of Medicine and Director of the Cardiology and Vascular Biology Units, and Dr. Burton E. Sobel, Professor of Medicine and Director of the Cardiovascular Research Institute, performed studies in 10 week old mice subjected to coronary occlusion.

Controls and PAI-1 overexpressing mice congenic on a C57BL6 background had comparable PAI-1 content in left ventricular myocardium despite a marked elevation of PAI-1 in plasma in the latter. 6 weeks after coronary occlusion the PAI-1 overexpressing mice exhibited a 2-fold increase in left ventricular (LV) PAI-1 content. Histochemical analysis demonstrated 33% more LV fibrosis as well.

The increased fibrosis associated with increased PAI-1 was accompanied by functional derangements including diminished LV wall thickness in both diastole and systole, increased end systolic LV dimensions, depressed fractional shortening, a greater impairment of LV segmental function, and greater transmitral E-wave amplitude.

In summary, overexpression of PAI-1 in the heart altered the response of the left ventricle to myocardial infarction. It led to increased expression of PAI-1 late after coronary occlusion accompanied by increased fibrosis and functional derangements indicative of both systolic and diastolic dysfunction. Dr. Sobel said that “in concert with our previously reported findings demonstrating increased expression of PAI-1 in the heart in transgenic mice rendered insulin resistant, these results suggest that the markedly increased incidence and severity of heart failure following myocardial infarction in patients with insulin resistance and type 2 diabetes may reflect in part adverse consequences of increased PAI-1 expression in the heart predisposing to fibrosis and impairment performance of the left ventricle.”

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine said “these elegant studies by Dr. Sobel and colleagues provide substantial insight into the mechanisms by which type 2 diabetes, with the resulting increase in PAI-1 in the heart, can lead to increased incidence and severity of heart failure following myocardial infarction. This is a major step forward in our understanding of the linkage between diabetes and cardiovascular disease”.

Media Contact

Dr. Burton Sobel EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors